These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29503720)

  • 1. On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements.
    Li Z; Schaefer M; Strahler A; Schaaf C; Jupp D
    Interface Focus; 2018 Apr; 8(2):20170039. PubMed ID: 29503720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
    Li Z; Jupp DL; Strahler AH; Schaaf CB; Howe G; Hewawasam K; Douglas ES; Chakrabarti S; Cook TA; Paynter I; Saenz EJ; Schaefer M
    Sensors (Basel); 2016 Mar; 16(3):313. PubMed ID: 26950126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active 3D Imaging of Vegetation based on Multi-Wavelength Fluorescence LiDAR.
    Zhao X; Shi S; Yang J; Gong W; Sun J; Chen B; Guo K; Chen B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty in multispectral lidar signals caused by incidence angle effects.
    Kaasalainen S; Åkerblom M; Nevalainen O; Hakala T; Kaasalainen M
    Interface Focus; 2018 Apr; 8(2):20170033. PubMed ID: 29503718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Country-wide data of ecosystem structure from the third Dutch airborne laser scanning survey.
    Kissling WD; Shi Y; Koma Z; Meijer C; Ku O; Nattino F; Seijmonsbergen AC; Grootes MW
    Data Brief; 2023 Feb; 46():108798. PubMed ID: 36569534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification.
    Rutzinger M; Höfle B; Hollaus M; Pfeifer N
    Sensors (Basel); 2008 Aug; 8(8):4505-4528. PubMed ID: 27873771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of vegetation water content at leaf and canopy level using dual-wavelength commercial terrestrial laser scanners.
    Elsherif A; Gaulton R; Mills J
    Interface Focus; 2018 Apr; 8(2):20170041. PubMed ID: 29503721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe.
    Anderson KE; Glenn NF; Spaete LP; Shinneman DJ; Pilliod DS; Arkle RS; McIlroy SK; Derryberry DR
    Environ Monit Assess; 2017 Oct; 189(11):578. PubMed ID: 29063247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology.
    Mark Danson F; Sasse F; Schofield LA
    Interface Focus; 2018 Apr; 8(2):20170049. PubMed ID: 29503727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification.
    Gong W; Sun J; Shi S; Yang J; Du L; Zhu B; Song S
    Sensors (Basel); 2015 Sep; 15(9):21989-2002. PubMed ID: 26340630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy.
    Cifuentes R; Van der Zande D; Salas-Eljatib C; Farifteh J; Coppin P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30297651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA.
    Orwig DA; Boucher P; Paynter I; Saenz E; Li Z; Schaaf C
    Interface Focus; 2018 Apr; 8(2):20170044. PubMed ID: 29503723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.
    Wasser L; Day R; Chasmer L; Taylor A
    PLoS One; 2013; 8(1):e54776. PubMed ID: 23382966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees.
    Disney M
    New Phytol; 2019 Jun; 222(4):1736-1741. PubMed ID: 30295928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining acoustic tracking and LiDAR to study bat flight behaviour in three-dimensional space.
    Hermans C; Koblitz JC; Bartholomeus H; Stilz P; Visser ME; Spoelstra K
    Mov Ecol; 2023 Apr; 11(1):25. PubMed ID: 37101233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispectral Light Detection and Ranging Technology and Applications: A Review.
    Takhtkeshha N; Mandlburger G; Remondino F; Hyyppä J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.