BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29503992)

  • 1. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.
    Liu F; Dong C; Ren J
    Nanoscale; 2018 Mar; 10(11):5309-5317. PubMed ID: 29503992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-photon excited photoluminescence of gold nanospheres and its application in prostate specific antigen detection via fluorescence correlation spectroscopy (FCS).
    Craciun AM; Suarasan S; Focsan M; Astilean S
    Talanta; 2021 Jun; 228():122242. PubMed ID: 33773714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation.
    Bouzin M; Sironi L; Chirico G; D'Alfonso L; Inverso D; Pallavicini P; Collini M
    Biophys J; 2015 Dec; 109(11):2246-58. PubMed ID: 26636936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy.
    Prashanthi S; Lanke SR; Kumar PH; Siva D; Bangal PR
    Appl Spectrosc; 2012 Jul; 66(7):835-41. PubMed ID: 22710248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science.
    Dong C; Ren J
    Acc Chem Res; 2023 Oct; 56(19):2582-2594. PubMed ID: 37706459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy.
    Murray RA; Qiu Y; Chiodo F; Marradi M; Penadés S; Moya SE
    Small; 2014 Jul; 10(13):2602-10. PubMed ID: 24639360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging.
    Shang L; Azadfar N; Stockmar F; Send W; Trouillet V; Bruns M; Gerthsen D; Nienhaus GU
    Small; 2011 Sep; 7(18):2614-20. PubMed ID: 21809441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres.
    Fukuba SY; Tsuboi K; Abe S; Kajikawa K
    Langmuir; 2008 Aug; 24(15):8367-72. PubMed ID: 18570447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold encapsulated chitosan-poly(acrylic acid) hybrid hollow nanospheres.
    Ding Y; Chen Q; Qian H; Chen Y; Wu W; Hu Y; Jiang X
    Macromol Biosci; 2009 Dec; 9(12):1272-80. PubMed ID: 19924682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery.
    Guo R; Li R; Li X; Zhang L; Jiang X; Liu B
    Small; 2009 Mar; 5(6):709-17. PubMed ID: 19235799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of highly biocompatible folic acid-functionalised SiO
    Xu X; Hu F; Shuai Q
    Dalton Trans; 2017 Nov; 46(44):15424-15433. PubMed ID: 29082408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of fluorescent porous zinc sulfide nanospheres and their application for potential drug delivery and live cell imaging.
    Xing R; Liu S
    Nanoscale; 2012 May; 4(10):3135-40. PubMed ID: 22517328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.
    Liu H; Dong C; Ren J
    J Am Chem Soc; 2014 Feb; 136(7):2775-85. PubMed ID: 24460214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal Raman microspectroscopic study of folate receptor-targeted delivery of 6-mercaptopurine-embedded gold nanoparticles in a single cell.
    Park J; Jeon WI; Lee SY; Ock KS; Seo JH; Park J; Ganbold EO; Cho K; Song NW; Joo SW
    J Biomed Mater Res A; 2012 May; 100(5):1221-8. PubMed ID: 22359274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.
    Shen Z; Li Y; Kohama K; Oneill B; Bi J
    Pharmacol Res; 2011 Jan; 63(1):51-8. PubMed ID: 21035550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging.
    He H; Xie C; Ren J
    Anal Chem; 2008 Aug; 80(15):5951-7. PubMed ID: 18590338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy.
    Ma N; Liu P; He N; Gu N; Wu FG; Chen Z
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31526-31542. PubMed ID: 28816044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From porous gold nanocups to porous nanospheres and solid particles--a new synthetic approach.
    Ihsan A; Katsiev H; Alyami N; Anjum DH; Khan WS; Hussain I
    J Colloid Interface Sci; 2015 May; 446():59-66. PubMed ID: 25656560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations.
    Alrahili M; Savchuk V; McNear K; Pinchuk A
    Sci Rep; 2020 Nov; 10(1):18790. PubMed ID: 33139828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.