These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29503999)

  • 1. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.
    Dong D; Yap LW; Smilgies DM; Si KJ; Shi Q; Cheng W
    Nanoscale; 2018 Mar; 10(11):5065-5071. PubMed ID: 29503999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-standing plasmonic-nanorod superlattice sheets.
    Ng KC; Udagedara IB; Rukhlenko ID; Chen Y; Tang Y; Premaratne M; Cheng W
    ACS Nano; 2012 Jan; 6(1):925-34. PubMed ID: 22176669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms.
    Zhang H; Wang R; Sikdar D; Wu L; Sun J; Gu N; Chen Y
    ACS Sens; 2022 Feb; 7(2):622-631. PubMed ID: 35157439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl.
    Wu L; Wang Z; Shen B
    Nanoscale; 2013 Jun; 5(12):5274-8. PubMed ID: 23674317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-standing nanoparticle superlattice sheets controlled by DNA.
    Cheng W; Campolongo MJ; Cha JJ; Tan SJ; Umbach CC; Muller DA; Luo D
    Nat Mater; 2009 Jun; 8(6):519-25. PubMed ID: 19404241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of truncated octahedral Au nanoparticles and its application for ultrasensitive surface enhanced Raman scattering immunosensing.
    Li Y; Ma Z
    Nanotechnology; 2013 Jul; 24(27):275605. PubMed ID: 23764655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection.
    Chen Y; Liu H; Yin H; Zhu Q; Yao G; Gu N
    Front Chem; 2020; 8():307. PubMed ID: 32411663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure.
    Zhao S; Ma W; Xu L; Wu X; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2015 Jun; 68():593-597. PubMed ID: 25643599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy.
    Ou FS; Hu M; Naumov I; Kim A; Wu W; Bratkovsky AM; Li X; Williams RS; Li Z
    Nano Lett; 2011 Jun; 11(6):2538-42. PubMed ID: 21604751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering.
    Chowdhury E; Rahaman MS; Sathitsuksanoh N; Grapperhaus CA; O'Toole MG
    Phys Chem Chem Phys; 2021 Nov; 23(44):25256-25263. PubMed ID: 34734598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D superlattices
    Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J
    Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Jul; 31(28):e1900989. PubMed ID: 31070276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.