These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29504071)

  • 1. A 3-DOF hemi-constrained wrist motion/force detection device for deploying simultaneous myoelectric control.
    Yang W; Yang D; Liu Y; Liu H
    Med Biol Eng Comput; 2018 Sep; 56(9):1669-1681. PubMed ID: 29504071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph-Driven Simultaneous and Proportional Estimation of Wrist Angle and Grasp Force via High-Density EMG.
    Li D; Kang P; Yu Y; Shull PB
    IEEE J Biomed Health Inform; 2024 May; 28(5):2723-2732. PubMed ID: 38442056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Individual Motor Unit Activity to Continuous Three-DoF Wrist Torques: Perspectives for Myoelectric Control.
    Chen C; Yu Y; Sheng X; Meng J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1807-1815. PubMed ID: 37030732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
    Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4223-6. PubMed ID: 24110664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Multi-DoF Movements Using a CST-Based Force Generation Model With Single-DoF Training.
    Xu Y; Yu Y; Zhao Z; Sheng X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():974-982. PubMed ID: 38376978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
    Dai C; Zhu Z; Martinez-Luna C; Hunt TR; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2019 Aug; 47():10-18. PubMed ID: 31009829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ensemble-based regression approach for continuous estimation of wrist and fingers movements from surface electromyography.
    Alazrai R; Khalifeh A; Alnuman N; Alabed D; Mowafi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():319-322. PubMed ID: 28268341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force/moment tracking performance during constant-pose, force-varying, bilaterally symmetric, hand-wrist tasks.
    Zhu Z; Martinez-Luna C; Li J; McDonald BE; Huang X; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2023 Apr; 69():102753. PubMed ID: 36731399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
    Hahne JM; Biessmann F; Jiang N; Rehbaum H; Farina D; Meinecke FC; Muller KR; Parra LC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):269-79. PubMed ID: 24608685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous estimation of multi-DOF movement from sEMG based on non-negative matrix factorization and L2 regulation.
    Meng M; Zhou G; Ma Y; Xi X
    Med Biol Eng Comput; 2023 Jul; 61(7):1675-1686. PubMed ID: 36853396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.
    Pan L; Yang Z; Zhang D
    Rev Sci Instrum; 2015 Oct; 86(10):104301. PubMed ID: 26520970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom.
    Muceli S; Jiang N; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6066-9. PubMed ID: 21097125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Neurophysiol; 2013 Jun; 109(11):2658-65. PubMed ID: 23515790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position and stiffness modulation of a wrist haptic device using myoelectric interface.
    Antuvan CW; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():734-739. PubMed ID: 28813907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control.
    Ingraham KA; Smith LH; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1675-8. PubMed ID: 26736598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.