These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29504133)

  • 1. Accurate lattice energies of organic molecular crystals from periodic turbomole calculations.
    Buchholz HK; Stein M
    J Comput Chem; 2018 Jul; 39(19):1335-1343. PubMed ID: 29504133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles lattice energy calculation of urea and hexamine crystals by a combination of periodic DFT and MP2 two-body interaction energy calculations.
    Tsuzuki S; Orita H; Honda K; Mikami M
    J Phys Chem B; 2010 May; 114(20):6799-805. PubMed ID: 20441196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.
    Brandenburg JG; Alessio M; Civalleri B; Peintinger MF; Bredow T; Grimme S
    J Phys Chem A; 2013 Sep; 117(38):9282-92. PubMed ID: 23947824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory.
    Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM
    J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirically augmented density functional theory for predicting lattice energies of aspirin, acetaminophen polymorphs, and ibuprofen homochiral and racemic crystals.
    Li T; Feng S
    Pharm Res; 2006 Oct; 23(10):2326-32. PubMed ID: 16927187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite and Low-Cost Approaches for Molecular Crystal Structure Prediction.
    LeBlanc LM; Otero-de-la-Roza A; Johnson ER
    J Chem Theory Comput; 2018 Apr; 14(4):2265-2276. PubMed ID: 29498837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Covalent Interactions in Molecular Crystals: Exploring the Accuracy of the Exchange-Hole Dipole Moment Model with Local Orbitals.
    LeBlanc LM; Weatherby JA; Otero-de-la-Roza A; Johnson ER
    J Chem Theory Comput; 2018 Nov; 14(11):5715-5724. PubMed ID: 30351005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Embedded and Performance of Density Functional Methods for Molecular Crystals.
    Dolgonos GA; Loboda OA; Boese AD
    J Phys Chem A; 2018 Jan; 122(2):708-713. PubMed ID: 29265819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures.
    Thomas SP; Spackman PR; Jayatilaka D; Spackman MA
    J Chem Theory Comput; 2018 Mar; 14(3):1614-1623. PubMed ID: 29406748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties.
    Hoja J; List A; Boese AD
    J Chem Theory Comput; 2024 Jan; 20(1):357-367. PubMed ID: 38109226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Calculated Lattice Parameters and Energies of Molecular Crystals Using van der Waals Density Functionals.
    Carter DJ; Rohl AL
    J Chem Theory Comput; 2014 Aug; 10(8):3423-37. PubMed ID: 26588311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.
    Grimme S; Brandenburg JG; Bannwarth C; Hansen A
    J Chem Phys; 2015 Aug; 143(5):054107. PubMed ID: 26254642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.
    Brandenburg JG; Grimme S
    Top Curr Chem; 2014; 345():1-23. PubMed ID: 24220994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling study of chiral drug crystals: lattice energy calculations.
    Li ZJ; Ojala WH; Grant DJ
    J Pharm Sci; 2001 Oct; 90(10):1523-39. PubMed ID: 11745711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy.
    Price AJA; Otero-de-la-Roza A; Johnson ER
    Chem Sci; 2023 Feb; 14(5):1252-1262. PubMed ID: 36756332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
    Nyman J; Pundyke OS; Day GM
    Phys Chem Chem Phys; 2016 Jun; 18(23):15828-37. PubMed ID: 27230942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revised values for the X23 benchmark set of molecular crystals.
    Dolgonos GA; Hoja J; Boese AD
    Phys Chem Chem Phys; 2019 Nov; 21(44):24333-24344. PubMed ID: 31675024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteogenic amino acids: chiral and racemic crystal packings and stabilities.
    Dunitz JD; Gavezzotti A
    J Phys Chem B; 2012 Jun; 116(23):6740-50. PubMed ID: 22360776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable DFT-based estimates of cohesive energies of organic solids: the anthracene crystal.
    Sancho-GarcĂ­a JC; Olivier Y
    J Chem Phys; 2012 Nov; 137(19):194311. PubMed ID: 23181310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.