These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29504237)

  • 1. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application.
    Dandeniyage LS; Adhikari R; Bown M; Shanks R; Adhikari B; Easton CD; Gengenbach TR; Cookson D; Gunatillake PA
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):112-121. PubMed ID: 29504237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application.
    Dandeniyage LS; Gunatillake PA; Adhikari R; Bown M; Shanks R; Adhikari B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1712-1720. PubMed ID: 28858405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol.
    Dandeniyage LS; Knower W; Adhikari R; Bown M; Shanks R; Adhikari B; Gunatillake PA
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2557-2565. PubMed ID: 30835945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability.
    Martin DJ; Warren LA; Gunatillake PA; McCarthy SJ; Meijs GF; Schindhelm K
    Biomaterials; 2000 May; 21(10):1021-9. PubMed ID: 10768754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes.
    Takahara A; Okkema AZ; Cooper SL; Coury AJ
    Biomaterials; 1991 Apr; 12(3):324-34. PubMed ID: 1854901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer.
    Simmons A; Hyvarinen J; Poole-Warren L
    Biomaterials; 2006 Sep; 27(25):4484-97. PubMed ID: 16690122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Hard Segment Content and Diisocyanate Structure on the Transparency and Mechanical Properties of Poly(dimethylsiloxane)-Based Urea Elastomers for Biomedical Applications.
    Riehle N; Athanasopulu K; Kutuzova L; Götz T; Kandelbauer A; Tovar GEM; Lorenz G
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33435271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Diisocyanate Structure to Modify Properties of Segmented Polyurethanes.
    Asensio M; Ferrer JF; Nohales A; Culebras M; Gómez CM
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character.
    Abraham GA; Marcos-Fernández A; Román JS
    J Biomed Mater Res A; 2006 Mar; 76(4):729-36. PubMed ID: 16317720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of polyurethanes based on novel macrodiols and MDI.
    Brandwood A; Meijs GF; Gunatillake PA; Noble KR; Schindhelm K; Rizzardo E
    J Biomater Sci Polym Ed; 1994; 6(1):41-54. PubMed ID: 7947472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation.
    Baheiraei N; Gharibi R; Yeganeh H; Miragoli M; Salvarani N; Di Pasquale E; Condorelli G
    J Biomed Mater Res A; 2016 Mar; 104(3):775-787. PubMed ID: 26540140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings.
    Ekin A; Webster DC
    J Comb Chem; 2007; 9(1):178-88. PubMed ID: 17206846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible starch-polyurethane films: Effect of mixed macrodiol polyurethane ionomers on physicochemical characteristics and hydrophobicity.
    Tai NL; Adhikari R; Shanks R; Halley P; Adhikari B
    Carbohydr Polym; 2018 Oct; 197():312-325. PubMed ID: 30007619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.
    Ou W; Qiu H; Chen Z; Xu K
    Biomaterials; 2011 Apr; 32(12):3178-88. PubMed ID: 21310479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.