These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 29504629)

  • 21. Asymmetries in specialization in ant-plant mutualistic networks.
    Guimarães PR; Rico-Gray V; dos Reis SF; Thompson JN
    Proc Biol Sci; 2006 Aug; 273(1597):2041-7. PubMed ID: 16846911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants.
    Chamberlain SA; Holland JN
    Ecology; 2008 May; 89(5):1364-74. PubMed ID: 18543629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant-plant mutualistic networks?
    Chamberlain SA; Kilpatrick JR; Holland JN
    Oecologia; 2010 Nov; 164(3):741-50. PubMed ID: 20526780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages.
    Nogueira A; Rey PJ; Alcántara JM; Feitosa RM; Lohmann LG
    PLoS One; 2015; 10(4):e0123806. PubMed ID: 25885221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna.
    Nogueira A; Rey PJ; Lohmann LG
    J Evol Biol; 2012 Nov; 25(11):2325-40. PubMed ID: 23013544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the impact of deforestation of the Atlantic rainforest on ant-fruit interactions: a field experiment using synthetic fruits.
    Bieber AG; Silva PS; Sendoya SF; Oliveira PS
    PLoS One; 2014; 9(2):e90369. PubMed ID: 24587341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Historical forest disturbance results in variation in functional resilience of seed dispersal mutualisms.
    Buono CM; Lofaso J; Smisko W; Gerth C; Santare J; Prior KM
    Ecology; 2023 Apr; 104(4):e3978. PubMed ID: 36692005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreasing water availability across the globe improves the effectiveness of protective ant-plant mutualisms: a meta-analysis.
    Leal LC; Peixoto PEC
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1785-1794. PubMed ID: 27791332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggressive bodyguards are not always the best: Preferential interaction with more aggressive ant species reduces reproductive success of plant bearing extrafloral nectaries.
    Melati BG; Leal LC
    PLoS One; 2018; 13(6):e0199764. PubMed ID: 29949639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism.
    Heil M; Rattke J; Boland W
    Science; 2005 Apr; 308(5721):560-3. PubMed ID: 15845855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks.
    Guimarães PR; Rico-Gray V; Oliveira PS; Izzo TJ; dos Reis SF; Thompson JN
    Curr Biol; 2007 Oct; 17(20):1797-803. PubMed ID: 17949981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the core species of the ant-plant network of oak forest converted to grassland: replacement of its ant functional groups.
    Cuautle M; Díaz-Castelazo C; Castillo-Guevara C; Torres Lagunes CG
    PeerJ; 2022; 10():e13679. PubMed ID: 35855899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Habitat fragmentation increases specialization of multi-trophic interactions by high species turnover.
    Zhang X; Dalsgaard B; Staab M; Zhu C; Zhao Y; Gonçalves F; Ren P; Cai C; Qiao G; Ding P; Si X
    Proc Biol Sci; 2023 Oct; 290(2009):20231372. PubMed ID: 37876189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands.
    Costa FV; Mello MA; Bronstein JL; Guerra TJ; Muylaert RL; Leite AC; Neves FS
    PLoS One; 2016; 11(12):e0167161. PubMed ID: 27911919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plants with extrafloral nectaries share indirect defenses and shape the local arboreal ant community.
    Moura RF; Del-Claro K
    Oecologia; 2023 Jan; 201(1):73-82. PubMed ID: 36372829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity and evolution of a trait mediating ant-plant interactions: insights from extrafloral nectaries in Senna (Leguminosae).
    Marazzi B; Conti E; Sanderson MJ; McMahon MM; Bronstein JL
    Ann Bot; 2013 Jun; 111(6):1263-75. PubMed ID: 23104672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation in the outcomes of an ant-plant system: fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries.
    Pires LP; Del-Claro K
    J Insect Sci; 2014; 14():84. PubMed ID: 25368040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations?
    Lange D; Del-Claro K
    PLoS One; 2014; 9(8):e105574. PubMed ID: 25141007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service.
    González-Teuber M; Silva Bueno JC; Heil M; Boland W
    PLoS One; 2012; 7(10):e46598. PubMed ID: 23056362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?
    Medina AM; Lopes PP
    J Insect Sci; 2014; 14():123. PubMed ID: 25368067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.