These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29504638)

  • 1. Substitution effects in the
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2018 Aug; 56(8):767-774. PubMed ID: 29504638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects in the GIAO-DFT calculations of the 15N NMR chemical shifts of azoles and azines.
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):686-93. PubMed ID: 25102971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT computational schemes for
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2019 Jul; 57(7):346-358. PubMed ID: 30769377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy factors and computational cost of the GIAO-DFT calculation of
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):1015-1021. PubMed ID: 28600816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GIAO-DFT calculation of
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2018 Aug; 56(8):727-739. PubMed ID: 29427330
    [No Abstract]   [Full Text] [Related]  

  • 8. Calculation of
    Rusakov YY; Rusakova IL; Semenov VA; Samultsev DO; Fedorov SV; Krivdin LB
    J Phys Chem A; 2018 Aug; 122(33):6746-6759. PubMed ID: 30044627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the long-range relativistic effects in the
    Samultsev DO; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):990-995. PubMed ID: 28557069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.
    Fedorov SV; Rusakov YY; Krivdin LB
    J Phys Chem A; 2015 Jun; 119(22):5778-89. PubMed ID: 25946056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of NMR chemical shifts in heterocycles: a method evaluation.
    Buß A; Koch R
    J Mol Model; 2017 Jan; 23(1):9. PubMed ID: 27987107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study of 15N NMR protonation shifts.
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2015 Jun; 53(6):433-41. PubMed ID: 25891386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroacridines: part 29. 15N NMR chemical shifts of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridines and their N-oxides-Taft, Swain-Lupton, and other types of linear correlations.
    Potmischil F; Marinescu M; Nicolescu A; Deleanu C; Hillebrand M
    Magn Reson Chem; 2008 Dec; 46(12):1141-7. PubMed ID: 18844244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?
    Tsipis AC; Karapetsas IN
    Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 15N NMR chemical shifts of ring substituted benzonitriles.
    Zácek P; Dransfeld A; Exner O; Schraml J
    Magn Reson Chem; 2006 Dec; 44(12):1073-80. PubMed ID: 16991110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Benefit of Using the IDSCRF- over UFF-Radii Cavities and Why Joint Correlations of NMR Chemical Shifts Can Be Advantageous: Condensed Pyridines as an IEF-PCM/GIAO/DFT Case Study.
    Nazarski RB; Justyna K; Leśniak S; Chrostowska A
    J Phys Chem A; 2016 Dec; 120(48):9519-9528. PubMed ID: 27933911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2.
    Dittmer A; Stoychev GL; Maganas D; Auer AA; Neese F
    J Chem Theory Comput; 2020 Nov; 16(11):6950-6967. PubMed ID: 32966067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT computational schemes for
    Semenov VA; Krivdin LB
    Magn Reson Chem; 2020 Jan; 58(1):56-64. PubMed ID: 31291478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and GIAO 15N NMR study of substituent effects in 1H-tetrazoles.
    Aridoss G; Zhao C; Borosky GL; Laali KK
    J Org Chem; 2012 Apr; 77(8):4152-5. PubMed ID: 22480162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.