These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29504760)

  • 1. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy.
    Chen S; Zhang Y; Shih TM; Yang W; Hu S; Hu X; Li J; Ren B; Mao B; Yang Z; Tian Z
    Nano Lett; 2018 Apr; 18(4):2209-2216. PubMed ID: 29504760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy.
    Wang H; Li H; Xu S; Zhao B; Xu W
    Sci Rep; 2017 Nov; 7(1):14630. PubMed ID: 29116139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of a plasmonic substrate with multi-resonance for surface enhanced hyper-Raman scattering.
    Zhu S; Fan C; Ding P; Liang E; Hou H; Wu Y
    Sci Rep; 2018 Aug; 8(1):11891. PubMed ID: 30089880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS.
    Zhang Q; Large N; Nordlander P; Wang H
    J Phys Chem Lett; 2014 Jan; 5(2):370-4. PubMed ID: 26270713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS.
    Ye J; Wen F; Sobhani H; Lassiter JB; Van Dorpe P; Nordlander P; Halas NJ
    Nano Lett; 2012 Mar; 12(3):1660-7. PubMed ID: 22339688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy.
    Zhou Y; Li X; Ren X; Yang L; Liu J
    Analyst; 2014 Oct; 139(19):4799-805. PubMed ID: 24975281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates.
    Wang X; Li M; Meng L; Lin K; Feng J; Huang T; Yang Z; Ren B
    ACS Nano; 2014 Jan; 8(1):528-36. PubMed ID: 24328390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.