BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29504917)

  • 1. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.
    Hagio T; Sakuraba S; Iwakiri J; Mori R; Asai K
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):38. PubMed ID: 29504917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
    Harmanci AO; Sharma G; Mathews DH
    BMC Bioinformatics; 2011 Apr; 12():108. PubMed ID: 21507242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed.
    Fornace ME; Porubsky NJ; Pierce NA
    ACS Synth Biol; 2020 Oct; 9(10):2665-2678. PubMed ID: 32910644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of RNA secondary structure using generalized centroid estimators.
    Hamada M; Kiryu H; Sato K; Mituyama T; Asai K
    Bioinformatics; 2009 Feb; 25(4):465-73. PubMed ID: 19095700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rfold: an exact algorithm for computing local base pairing probabilities.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2008 Feb; 24(3):367-73. PubMed ID: 18056736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming.
    Sato K; Kato Y; Hamada M; Akutsu T; Asai K
    Bioinformatics; 2011 Jul; 27(13):i85-93. PubMed ID: 21685106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum expected accuracy structural neighbors of an RNA secondary structure.
    Clote P; Lou F; Lorenz WA
    BMC Bioinformatics; 2012 Apr; 13 Suppl 5(Suppl 5):S6. PubMed ID: 22537010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities.
    Ferrè F; Ponty Y; Lorenz WA; Clote P
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W659-68. PubMed ID: 17567620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iFoldRNA v2: folding RNA with constraints.
    Krokhotin A; Houlihan K; Dokholyan NV
    Bioinformatics; 2015 Sep; 31(17):2891-3. PubMed ID: 25910700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Murlet: a practical multiple alignment tool for structural RNA sequences.
    Kiryu H; Tabei Y; Kin T; Asai K
    Bioinformatics; 2007 Jul; 23(13):1588-98. PubMed ID: 17459961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network Properties of the Ensemble of RNA Structures.
    Clote P; Bayegan A
    PLoS One; 2015; 10(10):e0139476. PubMed ID: 26488894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding consensus stable local optimal structures for aligned RNA sequences and its application to discovering riboswitch elements.
    Li Y; Zhong C; Zhang S
    Int J Bioinform Res Appl; 2014; 10(4-5):498-518. PubMed ID: 24989865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local RNA base pairing probabilities in large sequences.
    Bernhart SH; Hofacker IL; Stadler PF
    Bioinformatics; 2006 Mar; 22(5):614-5. PubMed ID: 16368769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARNA-Predict: accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing.
    Tsang HH; Wiese KC
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):727-40. PubMed ID: 21030739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rtools: A Web Server for Various Secondary Structural Analyses on Single RNA Sequences.
    Ono Y; Asai K
    Methods Mol Biol; 2023; 2586():1-14. PubMed ID: 36705895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment.
    Xu X; Ji Y; Stormo GD
    Bioinformatics; 2007 Aug; 23(15):1883-91. PubMed ID: 17537756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots.
    Akiyama M; Sakakibara Y; Sato K
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.