These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29505042)

  • 1. Coalescence between Au nanoparticles as induced by nanocurvature effect and electron beam athermal activation effect.
    Cheng L; Zhu X; Su J
    Nanoscale; 2018 May; 10(17):7978-7983. PubMed ID: 29505042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron beam-induced athermal nanowelding of crossing SiO
    Zheng Y; Cheng L; Su J; Chen C; Zhu X; Li H
    RSC Adv; 2022 Feb; 12(10):6018-6024. PubMed ID: 35424549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom Diffusion and Evaporation of Free-Ended Amorphous SiO
    Su J; Zhu X
    Nanoscale Res Lett; 2016 Dec; 11(1):514. PubMed ID: 27878577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intriguing surface-extruded plastic flow of SiOx amorphous nanowire as athermally induced by electron beam irradiation.
    Zhu X; Su J; Wu Y; Wang L; Wang Z
    Nanoscale; 2014; 6(3):1499-507. PubMed ID: 24317010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles.
    Liu Y; Sun Y
    Nanoscale; 2015 Aug; 7(32):13687-93. PubMed ID: 26213998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ TEM observation of preferential amorphization in single crystal Si nanowire.
    Su J; Zhu X
    Nanotechnology; 2018 Jun; 29(23):235703. PubMed ID: 29543190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic surface nanostructuring of Au-dots@SiO
    Yu R; Shibayama T; Ishioka J; Meng X; Lei Y; Watanabe S
    Nanotechnology; 2017 Jul; 28(27):275701. PubMed ID: 28541250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly and interaction of Au/C core-shell nanostructures: in situ observation in the transmission electron microscope.
    Sutter E; Sutter P; Zhu Y
    Nano Lett; 2005 Oct; 5(10):2092-6. PubMed ID: 16218744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of a close-packed Au nanoparticle/polymer monolayer into a large area array of oriented Au nanowires via E-beam promoted uniaxial deformation and room temperature sintering.
    Xiong S; Molecke R; Bosch M; Schunk PR; Brinker CJ
    J Am Chem Soc; 2011 Aug; 133(30):11410-3. PubMed ID: 21711045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of the coalescence of bismuth nanoparticles.
    Niu KY; Liao HG; Zheng H
    Microsc Microanal; 2014 Apr; 20(2):416-24. PubMed ID: 24636580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-walled carbon nanotubes under focused electron beam: metal passivation effect and nanoscaled curvature effect.
    Khan I; He B; Huang S; Wu C
    J Phys Condens Matter; 2018 Sep; 30(38):385302. PubMed ID: 30095438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.
    Liu L; Wang H; Yi Z; Deng Q; Lin Z; Zhang X
    Micron; 2018 Feb; 105():30-34. PubMed ID: 29175448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration.
    Yuk JM; Jeong M; Kim SY; Seo HK; Kim J; Lee JY
    Chem Commun (Camb); 2013 Dec; 49(98):11479-81. PubMed ID: 24121672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.
    Wang J; Chen S; Cui K; Li D; Chen D
    ACS Nano; 2016 Feb; 10(2):2893-902. PubMed ID: 26756675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation.
    Li J; Chen J; Wang H; Chen N; Wang Z; Guo L; Deepak FL
    Adv Sci (Weinh); 2018 Jun; 5(6):1700992. PubMed ID: 29938178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.
    Lu Y; Yu H; Chen S; Quan X; Zhao H
    Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electron beam irradiation on the temperature of single AuGe nanoparticles in a TEM.
    Kryshtal A; Mielczarek M; Pawlak J
    Ultramicroscopy; 2022 Mar; 233():113459. PubMed ID: 34942542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution.
    Jin B; Sushko ML; Liu Z; Jin C; Tang R
    Nano Lett; 2018 Oct; 18(10):6551-6556. PubMed ID: 30188138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence of Au Nanoparticles without Ligand Detachment.
    Guo P; Gao Y
    Phys Rev Lett; 2020 Feb; 124(6):066101. PubMed ID: 32109082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.