BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 29505405)

  • 1. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
    Sharma A; Oluyemi E; Myers K; Ambinder E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):70-84. PubMed ID: 37956000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic aperture focusing for short-lag spatial coherence imaging.
    Bottenus N; Byram BC; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1816-26. PubMed ID: 24658715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
    Morgan MR; Hyun D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; ():. PubMed ID: 30908212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution.
    Graham MT; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2069-2084. PubMed ID: 32746173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.
    Paul S; Mulani S; Singh MKA; Singh MS
    Med Phys; 2023 Dec; 50(12):7525-7538. PubMed ID: 37843980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating skin tone bias in linear array
    Fernandes GSP; Uliana JH; Bachmann L; Carneiro AAO; Lediju Bell MA; Pavan TZ
    Photoacoustics; 2023 Oct; 33():100555. PubMed ID: 38021286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalized Spatial Autocorrelation in Ultrasound B-Mode Imaging for Point-Scatterer Detection.
    Lou C; Liu Z; Yuchi M; Ding M
    Ultrasound Med Biol; 2024 May; 50(5):690-702. PubMed ID: 38331698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Neural Networks for Ultrasound Beamforming.
    Luchies AC; Byram BC
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2010-2021. PubMed ID: 29994441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Local Based Denoising Framework for In Vivo Contrast-Free Ultrasound Microvessel Imaging.
    Adabi S; Ghavami S; Fatemi M; Alizad A
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Visualization in Difficult-to-Image Stress Echocardiography Patients Using Real-Time Harmonic Spatial Coherence Imaging.
    Hyun D; Crowley ALC; LeFevre M; Cleve J; Rosenberg J; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):433-441. PubMed ID: 30530322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Ultrafast Power Doppler Imaging Using United Spatial-Angular Adaptive Scaling Wiener Postfilter.
    Wang Y; Huang L; Wang R; Wei X; Zheng C; Peng H; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Sep; 70(9):1118-1134. PubMed ID: 37478034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.
    Tierney J; Luchies A; Berger M; Byram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2370-2385. PubMed ID: 33684036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalence of time and aperture domain additive noise in ultrasound coherence.
    Bottenus NB; Trahey GE
    J Acoust Soc Am; 2015 Jan; 137(1):132-8. PubMed ID: 25618045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise Suppression for Ultrasound Attenuation Coefficient Estimation Based on Spectrum Normalization.
    Gong P; Song P; Huang C; Lok UW; Tang S; Zhou C; Yang L; Watt KD; Callstrom M; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2667-2674. PubMed ID: 33877970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Very Large Cardiac Channel Data Database (VLCD) Used to Evaluate Global Image Coherence (GIC) as an In Vivo Image Quality Metric.
    Rindal OMH; Bjastad TG; Espeland T; Berg EAR; Masoy SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1295-1307. PubMed ID: 37610900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.