These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 29505581)
1. Parkinson disease related ATP13A2 evolved early in animal evolution. Sørensen DM; Holemans T; van Veen S; Martin S; Arslan T; Haagendahl IW; Holen HW; Hamouda NN; Eggermont J; Palmgren M; Vangheluwe P PLoS One; 2018; 13(3):e0193228. PubMed ID: 29505581 [TBL] [Abstract][Full Text] [Related]
2. The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. Rinaldi DE; Corradi GR; Cuesta LM; Adamo HP; de Tezanos Pinto F Biochim Biophys Acta; 2015 Aug; 1848(8):1646-55. PubMed ID: 25912790 [TBL] [Abstract][Full Text] [Related]
3. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake. De La Hera DP; Corradi GR; Adamo HP; De Tezanos Pinto F Biochem J; 2013 Feb; 450(1):47-53. PubMed ID: 23205587 [TBL] [Abstract][Full Text] [Related]
4. A lipid switch unlocks Parkinson's disease-associated ATP13A2. Holemans T; Sørensen DM; van Veen S; Martin S; Hermans D; Kemmer GC; Van den Haute C; Baekelandt V; Günther Pomorski T; Agostinis P; Wuytack F; Palmgren M; Eggermont J; Vangheluwe P Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9040-5. PubMed ID: 26134396 [TBL] [Abstract][Full Text] [Related]
5. Structure and transport mechanism of P5B-ATPases. Li P; Wang K; Salustros N; Grønberg C; Gourdon P Nat Commun; 2021 Jun; 12(1):3973. PubMed ID: 34172751 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the P5 subfamily of P-type transport ATPases in mice. Schultheis PJ; Hagen TT; O'Toole KK; Tachibana A; Burke CR; McGill DL; Okunade GW; Shull GE Biochem Biophys Res Commun; 2004 Oct; 323(3):731-8. PubMed ID: 15381061 [TBL] [Abstract][Full Text] [Related]
7. Developmental expression of P5 ATPase mRNA in the mouse. Weingarten LS; Dave H; Li H; Crawford DA Cell Mol Biol Lett; 2012 Mar; 17(1):153-70. PubMed ID: 22207337 [TBL] [Abstract][Full Text] [Related]
8. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. Marcos AL; Corradi GR; Mazzitelli LR; Casali CI; Fernández Tome MDC; Adamo HP; de Tezanos Pinto F Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182993. PubMed ID: 31132336 [TBL] [Abstract][Full Text] [Related]
9. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. Cohen Y; Megyeri M; Chen OC; Condomitti G; Riezman I; Loizides-Mangold U; Abdul-Sada A; Rimon N; Riezman H; Platt FM; Futerman AH; Schuldiner M PLoS One; 2013; 8(12):e85519. PubMed ID: 24392018 [TBL] [Abstract][Full Text] [Related]
10. Structural basis of polyamine transport by human ATP13A2 (PARK9). Sim SI; von Bülow S; Hummer G; Park E Mol Cell; 2021 Nov; 81(22):4635-4649.e8. PubMed ID: 34715013 [TBL] [Abstract][Full Text] [Related]
11. Structural divergence between the two subgroups of P5 ATPases. Sørensen DM; Buch-Pedersen MJ; Palmgren MG Biochim Biophys Acta; 2010; 1797(6-7):846-55. PubMed ID: 20416272 [TBL] [Abstract][Full Text] [Related]
12. Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2. Park JS; Sue CM Curr Protein Pept Sci; 2017; 18(7):725-732. PubMed ID: 26965689 [TBL] [Abstract][Full Text] [Related]
13. Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans. Zielich J; Tzima E; Schröder EA; Jemel F; Conradt B; Lambie EJ PLoS One; 2018; 13(3):e0194451. PubMed ID: 29547664 [TBL] [Abstract][Full Text] [Related]
14. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Demirsoy S; Martin S; Motamedi S; van Veen S; Holemans T; Van den Haute C; Jordanova A; Baekelandt V; Vangheluwe P; Agostinis P Hum Mol Genet; 2017 May; 26(9):1656-1669. PubMed ID: 28334751 [TBL] [Abstract][Full Text] [Related]
15. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Daniel G; Musso A; Tsika E; Fiser A; Glauser L; Pletnikova O; Schneider BL; Moore DJ Neurobiol Dis; 2015 Jan; 73():229-43. PubMed ID: 25461191 [TBL] [Abstract][Full Text] [Related]
16. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Kong SM; Chan BK; Park JS; Hill KJ; Aitken JB; Cottle L; Farghaian H; Cole AR; Lay PA; Sue CM; Cooper AA Hum Mol Genet; 2014 Jun; 23(11):2816-33. PubMed ID: 24603074 [TBL] [Abstract][Full Text] [Related]
17. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Ji J; Cui MK; Zou R; Wu MZ; Ge MX; Li J; Zhang ZR Mol Cell; 2024 May; 84(10):1917-1931.e15. PubMed ID: 38723633 [TBL] [Abstract][Full Text] [Related]
18. P5-ATPases: Structure, substrate specificities, and transport mechanisms. Sim SI; Park E Curr Opin Struct Biol; 2023 Apr; 79():102531. PubMed ID: 36724561 [TBL] [Abstract][Full Text] [Related]
19. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Park JS; Mehta P; Cooper AA; Veivers D; Heimbach A; Stiller B; Kubisch C; Fung VS; Krainc D; Mackay-Sim A; Sue CM Hum Mutat; 2011 Aug; 32(8):956-64. PubMed ID: 21542062 [TBL] [Abstract][Full Text] [Related]
20. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. McKenna MJ; Sim SI; Ordureau A; Wei L; Harper JW; Shao S; Park E Science; 2020 Sep; 369(6511):. PubMed ID: 32973005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]