These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29505990)

  • 21. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.
    Chi WJ; Browning W; Looney S; Mackert JR; Windhorn RJ; Rueggeberg F
    US Army Med Dep J; 2017; (2-17):71-79. PubMed ID: 28853123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of polyethylene surface with stable superhydrophobicity by nanoparticle assisted thermal micromolding process.
    Feng J; Zhong M; Lin W
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2679-84. PubMed ID: 22755108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in the mechanical durability of superhydrophobic materials.
    Milionis A; Loth E; Bayer IS
    Adv Colloid Interface Sci; 2016 Mar; 229():57-79. PubMed ID: 26792021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of a Silica-Silica Nanoparticle Monolayer Array Nanocomposite Film on an Anodic Aluminum Oxide Substrate and Its Optical and Tribological Properties.
    Sekiguchi K; Katsumata KI; Segawa H; Nakanishi T; Yasumori A
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27672-27681. PubMed ID: 32462860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm).
    Karunakaran RG; Lu CH; Zhang Z; Yang S
    Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment.
    Ren T; Geng Z; He J; Zhang X; He J
    J Colloid Interface Sci; 2017 Jan; 486():1-7. PubMed ID: 27689720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultraviolet-Durable Superhydrophobic Nanocomposite Thin Films Based on Cobalt Stearate-Coated TiO
    Xiong J; Sarkar DK; Chen XG
    ACS Omega; 2017 Nov; 2(11):8198-8204. PubMed ID: 31457363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites.
    Vazirinasab E; Maghsoudi K; Momen G; Jafari R
    Soft Matter; 2022 Jan; 18(2):412-424. PubMed ID: 34904993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic nanocomposite coatings with photoinitiated three-dimensional networks based on reactive graphene nanosheet-induced self-wrinkling patterned surfaces.
    Feng Y; Peng C; Li Y; Hu J; Deng Q; Wu Q; Xu Z
    J Colloid Interface Sci; 2019 Feb; 536():149-159. PubMed ID: 30366180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties.
    Seeni Meera KM; Murali Sankar R; Paul J; Jaisankar SN; Mandal AB
    Phys Chem Chem Phys; 2014 May; 16(20):9276-88. PubMed ID: 24714842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalent layer-by-layer assembled superhydrophobic organic-inorganic hybrid films.
    Amigoni S; Taffin de Givenchy E; Dufay M; Guittard F
    Langmuir; 2009 Sep; 25(18):11073-7. PubMed ID: 19601564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Fluorine-Free Superhydrophobic Amino-Silicone Oil/SiO
    Sheng J; Xu Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2017 May; 9(17):15139-15147. PubMed ID: 28414423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing.
    Xi Q; Chen X; Evans DG; Yang W
    Langmuir; 2012 Jun; 28(25):9885-92. PubMed ID: 22670869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Design and Fabrication of Superwetting Surfaces with Excellent Wear-Resistance.
    Zhang W; Xiang T; Liu F; Zhang M; Gan W; Zhai X; Di X; Wang Y; Liu G; Wang C
    ACS Appl Mater Interfaces; 2017 May; 9(18):15776-15784. PubMed ID: 28426200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive amphiphilic hollow SiO
    Bao Y; Zhang Y; Ma J
    Nanoscale; 2020 Aug; 12(31):16443-16450. PubMed ID: 32490864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.
    Long M; Peng S; Deng W; Yang X; Miao K; Wen N; Miao X; Deng W
    J Colloid Interface Sci; 2017 Dec; 508():18-27. PubMed ID: 28818653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct catalytic route to superhydrophobic polyethylene films.
    Han W; Wu D; Ming W; Niemantsverdriet HJ; Thüne PC
    Langmuir; 2006 Sep; 22(19):7956-9. PubMed ID: 16952226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion.
    Bai X; Xue CH; Jia ST
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28171-28179. PubMed ID: 27668829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.
    Fang J; Wang H; Xue Y; Wang X; Lin T
    ACS Appl Mater Interfaces; 2010 May; 2(5):1449-55. PubMed ID: 20397642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.