BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29506470)

  • 1. Alignment-free clustering of large data sets of unannotated protein conserved regions using minhashing.
    Abnousi A; Broschat SL; Kalyanaraman A
    BMC Bioinformatics; 2018 Mar; 19(1):83. PubMed ID: 29506470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions.
    Abnousi A; Broschat SL; Kalyanaraman A
    PLoS One; 2016; 11(8):e0161338. PubMed ID: 27552220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CLUSS: clustering of protein sequences based on a new similarity measure.
    Kelil A; Wang S; Brzezinski R; Fleury A
    BMC Bioinformatics; 2007 Aug; 8():286. PubMed ID: 17683581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid clustering approach to recognition of protein families in 114 microbial genomes.
    Harlow TJ; Gogarten JP; Ragan MA
    BMC Bioinformatics; 2004 Apr; 5():45. PubMed ID: 15115543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy.
    Raghava GP; Searle SM; Audley PC; Barber JD; Barton GJ
    BMC Bioinformatics; 2003 Oct; 4():47. PubMed ID: 14552658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation.
    Russo ET; Laio A; Punta M
    BMC Bioinformatics; 2021 Mar; 22(1):121. PubMed ID: 33711918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks.
    Ma Q; Chirn GW; Cai R; Szustakowski JD; Nirmala NR
    BMC Bioinformatics; 2005 Oct; 6():242. PubMed ID: 16202129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering co-occurring patterns and their biological significance in protein families.
    Lee ES; Fung S; Sze-To HY; Wong AK
    BMC Bioinformatics; 2014; 15 Suppl 12(Suppl 12):S2. PubMed ID: 25474736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AntiClustal: Multiple Sequence Alignment by antipole clustering and linear approximate 1-median computation.
    Di Pietro C; Di Pietro V; Emmanuele G; Ferro A; Maugeri T; Modica E; Pigola G; Pulvirenti A; Purrello M; Ragusa M; Scalia M; Shasha D; Travali S; Zimmitti V
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():326-36. PubMed ID: 16452808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality sequence clustering guided by network topology and multiple alignment likelihood.
    Miele V; Penel S; Daubin V; Picard F; Kahn D; Duret L
    Bioinformatics; 2012 Apr; 28(8):1078-85. PubMed ID: 22368255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving pairwise comparison of protein sequences with domain co-occurrence.
    Menichelli C; Gascuel O; Bréhélin L
    PLoS Comput Biol; 2018 Jan; 14(1):e1005889. PubMed ID: 29293498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph-based clustering method for a large set of sequences using a graph partitioning algorithm.
    Kawaji H; Yamaguchi Y; Matsuda H; Hashimoto A
    Genome Inform; 2001; 12():93-102. PubMed ID: 11791228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIALIGN-T: an improved algorithm for segment-based multiple sequence alignment.
    Subramanian AR; Weyer-Menkhoff J; Kaufmann M; Morgenstern B
    BMC Bioinformatics; 2005 Mar; 6():66. PubMed ID: 15784139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient functional clustering of protein sequences using the Dirichlet process.
    Brown DP
    Bioinformatics; 2008 Aug; 24(16):1765-71. PubMed ID: 18511467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DPCfam: Unsupervised protein family classification by Density Peak Clustering of large sequence datasets.
    Russo ET; Barone F; Bateman A; Cozzini S; Punta M; Laio A
    PLoS Comput Biol; 2022 Oct; 18(10):e1010610. PubMed ID: 36260616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.
    Nagar A; Hahsler M
    BMC Bioinformatics; 2013; 14 Suppl 11(Suppl 11):S2. PubMed ID: 24564200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.