BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29507044)

  • 1. Fructose bisphosphatase 2 overexpression increases glucose uptake in skeletal muscle.
    Bakshi I; Suryana E; Small L; Quek LE; Brandon AE; Turner N; Cooney GJ
    J Endocrinol; 2018 May; 237(2):101-111. PubMed ID: 29507044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress.
    Park HJ; Jang HR; Park SY; Kim YB; Lee HY; Choi CS
    Exp Mol Med; 2020 Mar; 52(3):485-496. PubMed ID: 32203098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of key substrate cycle enzymes in rat spermatogenic cells: fructose 1,6 bisphosphatase and 6 phosphofructose 1-kinase.
    Yáñez AJ; Bustamante X; Bertinat R; Werner E; Rauch MC; Concha II; Reyes JG; Slebe JC
    J Cell Physiol; 2007 Sep; 212(3):807-16. PubMed ID: 17492776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin.
    Song S; Andrikopoulos S; Filippis C; Thorburn AW; Khan D; Proietto J
    Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E275-82. PubMed ID: 11440903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle-specific overexpression of heat shock protein 72 improves skeletal muscle insulin-stimulated glucose uptake but does not alter whole body metabolism.
    Marshall JPS; Estevez E; Kammoun HL; King EJ; Bruce CR; Drew BG; Qian H; Iliades P; Gregorevic P; Febbraio MA; Henstridge DC
    Diabetes Obes Metab; 2018 Aug; 20(8):1928-1936. PubMed ID: 29652108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose-1,6-Bisphosphatase 2 Inhibits Oral Squamous Cell Carcinoma Tumorigenesis and Glucose Metabolism via Downregulation of c-Myc.
    Wang L; Wang J; Shen Y; Zheng Z; Sun J
    Oxid Med Cell Longev; 2022; 2022():6766787. PubMed ID: 35571245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.
    Droppelmann CA; Sáez DE; Asenjo JL; Yáñez AJ; García-Rocha M; Concha II; Grez M; Guinovart JJ; Slebe JC
    Biochem J; 2015 Dec; 472(2):225-37. PubMed ID: 26417114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells.
    Li H; Wang J; Xu H; Xing R; Pan Y; Li W; Cui J; Zhang H; Lu Y
    Mol Cancer; 2013 Sep; 12(1):110. PubMed ID: 24063558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.
    Vestergaard H
    Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphofructokinase-1 and fructose bisphosphatase-1 in canine liver and kidney.
    Kanai S; Shimada T; Narita T; Okabayashi K
    J Vet Med Sci; 2019 Oct; 81(10):1515-1521. PubMed ID: 31474665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the glucosamine pathway in fat-induced insulin resistance.
    Hawkins M; Barzilai N; Liu R; Hu M; Chen W; Rossetti L
    J Clin Invest; 1997 May; 99(9):2173-82. PubMed ID: 9151789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free fatty acids induce the demethylation of the fructose 1,6-biphosphatase 2 gene promoter and potentiate its expression in hepatocytes.
    Wang L; Liu M; Wu Y; Li X; Yin F; Yin L; Liu J
    Food Funct; 2021 May; 12(9):4165-4175. PubMed ID: 33977939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destabilization of fructose 1,6-bisphosphatase-Z-line interactions is a mechanism of glyconeogenesis down-regulation in vivo.
    Gizak A; Mazurek J; Wozniak M; Maciaszczyk-Dziubinska E; Rakus D
    Biochim Biophys Acta; 2013 Mar; 1833(3):622-8. PubMed ID: 23228565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.
    Oakes ND; Cooney GJ; Camilleri S; Chisholm DJ; Kraegen EW
    Diabetes; 1997 Nov; 46(11):1768-74. PubMed ID: 9356024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method of assessing rates of the futile cycle during glycolytic and gluconeogenic metabolism.
    Torres JC; Guixé V; Babul J
    Arch Biochem Biophys; 1995 Aug; 321(2):517-25. PubMed ID: 7646079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rate of substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate in skeletal muscle from cold-exposed, hyperthyroid or acutely exercised rats.
    Challis RA; Arch JR; Newsholme EA
    Biochem J; 1985 Oct; 231(1):217-20. PubMed ID: 2998343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Theoretical evidence for the need to suppress parasitic recirculation in the futile cycle fructose-6-P--fructose-1,6-P2].
    Sel'kov EE; Avseenko NV
    Biofizika; 1980; 25(2):227-31. PubMed ID: 6245727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose-induced hepatic gluconeogenesis: effect of L-carnitine.
    Rajasekar P; Anuradha CV
    Life Sci; 2007 Mar; 80(13):1176-83. PubMed ID: 17239403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in quaternary structure of muscle fructose-1,6-bisphosphatase regulate affinity of the enzyme to mitochondria.
    Pirog M; Gizak A; Rakus D
    Int J Biochem Cell Biol; 2014 Mar; 48():55-9. PubMed ID: 24412565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose-1,6-bisphosphatase: From a glucose metabolism enzyme to multifaceted regulator of a cell fate.
    Gizak A; Duda P; Wisniewski J; Rakus D
    Adv Biol Regul; 2019 May; 72():41-50. PubMed ID: 30871972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.