These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 29507214)
21. Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Mallet M; Nabat P; Johnson B; Michou M; Haywood JM; Chen C; Dubovik O Sci Adv; 2021 Oct; 7(41):eabg9998. PubMed ID: 34623916 [TBL] [Abstract][Full Text] [Related]
22. Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Ningombam SS; Khatri P; Larson EJL; Dumka UC; Sarangi C; Vineeth R Sci Total Environ; 2023 Feb; 858(Pt 2):159898. PubMed ID: 36343809 [TBL] [Abstract][Full Text] [Related]
23. Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Zhang YN; Zhang ZS; Chan CY; Engling G; Sang XF; Shi S; Wang XM Environ Sci Pollut Res Int; 2012 Jan; 19(1):244-55. PubMed ID: 21735161 [TBL] [Abstract][Full Text] [Related]
24. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Pani SK; Lin NH; Chantara S; Wang SH; Khamkaew C; Prapamontol T; Janjai S Sci Total Environ; 2018 Aug; 633():892-911. PubMed ID: 29602124 [TBL] [Abstract][Full Text] [Related]
25. Satellite Observations of Precipitating Marine Stratocumulus Show Greater Cloud Fraction for Decoupled Clouds in Comparison to Coupled Clouds. Goren T; Rosenfeld D; Sourdeval O; Quaas J Geophys Res Lett; 2018 May; 45(10):5126-5134. PubMed ID: 30034043 [TBL] [Abstract][Full Text] [Related]
26. Global estimate of aerosol direct radiative forcing from satellite measurements. Bellouin N; Boucher O; Haywood J; Reddy MS Nature; 2005 Dec; 438(7071):1138-41. PubMed ID: 16372005 [TBL] [Abstract][Full Text] [Related]
27. Locally narrow droplet size distributions are ubiquitous in stratocumulus clouds. Allwayin N; Larsen ML; Glienke S; Shaw RA Science; 2024 May; 384(6695):528-532. PubMed ID: 38696557 [TBL] [Abstract][Full Text] [Related]
28. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies. Ghosh S; Smith MH; Rap A Philos Trans A Math Phys Eng Sci; 2007 Nov; 365(1860):2659-74. PubMed ID: 17666381 [TBL] [Abstract][Full Text] [Related]
29. Assessing effective radiative forcing from aerosol-cloud interactions over the global ocean. Wall CJ; Norris JR; Possner A; McCoy DT; McCoy IL; Lutsko NJ Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2210481119. PubMed ID: 36343255 [TBL] [Abstract][Full Text] [Related]
30. Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Mardi AH; Dadashazar H; MacDonald AB; Crosbie E; Coggon MM; Aghdam MA; Woods RK; Jonsson HH; Flagan RC; Seinfeld JH; Sorooshian A J Geophys Res Atmos; 2019 Nov; 124(22):12301-12318. PubMed ID: 33274175 [TBL] [Abstract][Full Text] [Related]
31. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Wilcox EM; Thomas RM; Praveen PS; Pistone K; Bender FA; Ramanathan V Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11794-11799. PubMed ID: 27702889 [TBL] [Abstract][Full Text] [Related]
32. Aerosol-boundary layer dynamics and its effect on aerosol radiative forcing and atmospheric heating rate in the Indian Ocean sector of Southern Ocean. Salim SN; Adhikari A; Shaikh AA; Menon HB; Kumar NVPK; Rajeev K Sci Total Environ; 2023 Feb; 858(Pt 1):159770. PubMed ID: 36309254 [TBL] [Abstract][Full Text] [Related]
33. Forty-year (1971-2010) semiquantitative observations of visibility-cloud-precipitation in Korea and its implication for aerosol effects on regional climate. Lee HJ; Kang JE; Kim CH J Air Waste Manag Assoc; 2015 Jul; 65(7):788-99. PubMed ID: 26079552 [TBL] [Abstract][Full Text] [Related]
34. Re-examining Dust Chemical Aging and Its Impacts on Earth's Climate. Gaston CJ Acc Chem Res; 2020 May; 53(5):1005-1013. PubMed ID: 32349473 [TBL] [Abstract][Full Text] [Related]
36. Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: Impact of agricultural biomass burning emissions. Sharma D; Srivastava AK; Ram K; Singh A; Singh D Environ Pollut; 2017 Dec; 231(Pt 1):1030-1041. PubMed ID: 28915541 [TBL] [Abstract][Full Text] [Related]
37. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Chung CE; Ramanathan V; Decremer D Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11624-9. PubMed ID: 22753522 [TBL] [Abstract][Full Text] [Related]
38. Boundary layer aerosol characteristics at Mahabubnagar during CAIPEEX-IGOC: modeling the optical and radiative properties. Srivastava AK; Bisht DS; Tiwari S Sci Total Environ; 2014 Jan; 468-469():1093-102. PubMed ID: 24103256 [TBL] [Abstract][Full Text] [Related]
39. Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations. Ramachandran S; Kedia S Environ Sci Pollut Res Int; 2012 Jul; 19(6):2159-71. PubMed ID: 22231371 [TBL] [Abstract][Full Text] [Related]
40. Columnar optical-radiative properties and components of aerosols in the Arctic summer from long-term AERONET measurements. Liang Y; Che H; Zhang X; Li L; Gui K; Zheng Y; Zhang X; Zhao H; Zhang P; Zhang X Sci Total Environ; 2024 Feb; 912():169052. PubMed ID: 38061640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]