BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29507215)

  • 1. Exploring modular allostery via interchangeable regulatory domains.
    Fan Y; Cross PJ; Jameson GB; Parker EJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3006-3011. PubMed ID: 29507215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal allostery arising from a bienzyme assembly controls aromatic amino acid biosynthesis in Prevotella nigrescens.
    Bai Y; Parker EJ
    J Biol Chem; 2021 Sep; 297(3):101038. PubMed ID: 34343567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric inhibitor specificity of Thermotoga maritima 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.
    Cross PJ; Parker EJ
    FEBS Lett; 2013 Sep; 587(18):3063-8. PubMed ID: 23916814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering allosteric control to an unregulated enzyme by transfer of a regulatory domain.
    Cross PJ; Allison TM; Dobson RC; Jameson GB; Parker EJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2111-6. PubMed ID: 23345433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdomain Conformational Changes Provide Allosteric Regulation en Route to Chorismate.
    Nazmi AR; Lang EJM; Bai Y; Allison TM; Othman MH; Panjikar S; Arcus VL; Parker EJ
    J Biol Chem; 2016 Oct; 291(42):21836-21847. PubMed ID: 27502275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain cross-talk within a bifunctional enzyme provides catalytic and allosteric functionality in the biosynthesis of aromatic amino acids.
    Bai Y; Lang EJM; Nazmi AR; Parker EJ
    J Biol Chem; 2019 Mar; 294(13):4828-4842. PubMed ID: 30670586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in
    Jiao W; Fan Y; Blackmore NJ; Parker EJ
    J Biol Chem; 2020 May; 295(19):6252-6262. PubMed ID: 32217694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties of Both: AN EXAMPLE OF MOLECULAR SYMBIOSIS.
    Blackmore NJ; Nazmi AR; Hutton RD; Webby MN; Baker EN; Jameson GB; Parker EJ
    J Biol Chem; 2015 Jul; 290(29):18187-18198. PubMed ID: 26032422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse allosteric componentry and mechanisms control entry into aromatic metabolite biosynthesis.
    Jiao W; Lang EJ; Bai Y; Fan Y; Parker EJ
    Curr Opin Struct Biol; 2020 Dec; 65():159-167. PubMed ID: 32739636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional characterisation of the entry point to pyocyanin biosynthesis in
    Sterritt OW; Lang EJM; Kessans SA; Ryan TM; Demeler B; Jameson GB; Parker EJ
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30242059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cross-talk among remote binding sites: the molecular basis for unusual synergistic allostery.
    Jiao W; Hutton RD; Cross PJ; Jameson GB; Parker EJ
    J Mol Biol; 2012 Jan; 415(4):716-26. PubMed ID: 22154807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Pseudoisostructural Type II DAH7PS Enzyme from Pseudomonas aeruginosa: Alternative Evolutionary Strategies to Control Shikimate Pathway Flux.
    Sterritt OW; Kessans SA; Jameson GB; Parker EJ
    Biochemistry; 2018 May; 57(18):2667-2678. PubMed ID: 29608284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis.
    Cross PJ; Dobson RC; Patchett ML; Parker EJ
    J Biol Chem; 2011 Mar; 286(12):10216-24. PubMed ID: 21282100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain.
    Light SH; Halavaty AS; Minasov G; Shuvalova L; Anderson WF
    Protein Sci; 2012 Jun; 21(6):887-95. PubMed ID: 22505283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.
    Reichau S; Blackmore NJ; Jiao W; Parker EJ
    PLoS One; 2016; 11(4):e0152723. PubMed ID: 27128682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neisseria meningitidis expresses a single 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine.
    Cross PJ; Pietersma AL; Allison TM; Wilson-Coutts SM; Cochrane FC; Parker EJ
    Protein Sci; 2013 Aug; 22(8):1087-99. PubMed ID: 23754471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis.
    Webby CJ; Jiao W; Hutton RD; Blackmore NJ; Baker HM; Baker EN; Jameson GB; Parker EJ
    J Biol Chem; 2010 Oct; 285(40):30567-76. PubMed ID: 20667835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diversity of allosteric controls at the gateway to aromatic amino acid biosynthesis.
    Light SH; Anderson WF
    Protein Sci; 2013 Apr; 22(4):395-404. PubMed ID: 23400945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase?
    Schofield LR; Anderson BF; Patchett ML; Norris GE; Jameson GB; Parker EJ
    Biochemistry; 2005 Sep; 44(36):11950-62. PubMed ID: 16142893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three sites and you are out: ternary synergistic allostery controls aromatic amino acid biosynthesis in Mycobacterium tuberculosis.
    Blackmore NJ; Reichau S; Jiao W; Hutton RD; Baker EN; Jameson GB; Parker EJ
    J Mol Biol; 2013 May; 425(9):1582-92. PubMed ID: 23274137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.