These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 29507236)

  • 1. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.
    Gupta A; Reizman IM; Reisch CR; Prather KL
    Nat Biotechnol; 2017 Mar; 35(3):273-279. PubMed ID: 28191902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.
    Gupta A; Hicks MA; Manchester SP; Prather KL
    Biotechnol J; 2016 Sep; 11(9):1201-8. PubMed ID: 27312887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
    Moon TS; Yoon SH; Lanza AM; Roy-Mayhew JD; Prather KL
    Appl Environ Microbiol; 2009 Feb; 75(3):589-95. PubMed ID: 19060162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing glucaric acid production from
    Ding N; Sun L; Zhou X; Zhang L; Deng Y; Yin L
    Appl Environ Microbiol; 2024 Jun; 90(6):e0014924. PubMed ID: 38808978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer.
    Chen N; Wang J; Zhao Y; Deng Y
    Microb Cell Fact; 2018 May; 17(1):67. PubMed ID: 29729665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.
    Shiue E; Prather KL
    Metab Eng; 2014 Mar; 22():22-31. PubMed ID: 24333274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid.
    Su HH; Peng F; Ou XY; Zeng YJ; Zong MH; Lou WY
    N Biotechnol; 2020 Nov; 59():51-58. PubMed ID: 32693027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of glucaric acid from myo-inositol in engineered Pichia pastoris.
    Liu Y; Gong X; Wang C; Du G; Chen J; Kang Z
    Enzyme Microb Technol; 2016 Sep; 91():8-16. PubMed ID: 27444324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid].
    Gong X; Liu Y; Wang C; Li J; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):228-236. PubMed ID: 28956379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3).
    Waegeman H; Beauprez J; Moens H; Maertens J; De Mey M; Foulquié-Moreno MR; Heijnen JJ; Charlier D; Soetaert W
    BMC Microbiol; 2011 Apr; 11():70. PubMed ID: 21481254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
    Moon TS; Dueber JE; Shiue E; Prather KL
    Metab Eng; 2010 May; 12(3):298-305. PubMed ID: 20117231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch.
    Hou J; Gao C; Guo L; Nielsen J; Ding Q; Tang W; Hu G; Chen X; Liu L
    Metab Eng; 2020 Sep; 61():47-57. PubMed ID: 32416271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control.
    Wei L; Zhao J; Wang Y; Gao J; Du M; Zhang Y; Xu N; Du H; Ju J; Liu Q; Liu J
    Metab Eng; 2022 Jan; 69():134-146. PubMed ID: 34856366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Dynamic Regulation to Increase L-Phenylalanine Production in
    Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D
    J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae.
    Marques WL; Anderson LA; Sandoval L; Hicks MA; Prather KLJ
    Enzyme Microb Technol; 2020 Oct; 140():109623. PubMed ID: 32912683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of D-glucaric acid from sucrose with routed carbon distribution in metabolically engineered Escherichia coli.
    Qu YN; Yan HJ; Guo Q; Li JL; Ruan YC; Yue XZ; Zheng WX; Tan TW; Fan LH
    Metab Eng; 2018 May; 47():393-400. PubMed ID: 29715517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered
    Dinh CV; Prather KLJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25562-25568. PubMed ID: 31796590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae.
    Zhao Y; Li J; Su R; Liu Y; Wang J; Deng Y
    J Biotechnol; 2021 May; 332():61-71. PubMed ID: 33812897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.