BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 29507237)

  • 1. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface.
    Zhang X; Barraza KM; Beauchamp JL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3255-3260. PubMed ID: 29507237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical sensor for the liquid-ordered phase.
    Cao H; Zhang J; Jing B; Regen SL
    J Am Chem Soc; 2005 Jun; 127(24):8813-6. PubMed ID: 15954788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
    Caillon L; Lequin O; Khemtémourian L
    Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.
    Thompson KC; Jones SH; Rennie AR; King MD; Ward AD; Hughes BR; Lucas CO; Campbell RA; Hughes AV
    Langmuir; 2013 Apr; 29(14):4594-602. PubMed ID: 23480170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids?
    Mattjus P; Slotte JP
    Chem Phys Lipids; 1996 Jun; 81(1):69-80. PubMed ID: 9450320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregates of saturated phospholipids at the air-water interface.
    Evans RW
    Chem Phys Lipids; 1995 Nov; 78(2):163-75. PubMed ID: 8565114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cholesterol on melittin lipidation in neutral membranes.
    Britt HM; Mosely JA; Sanderson JM
    Phys Chem Chem Phys; 2019 Jan; 21(2):631-640. PubMed ID: 30540307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.
    Alsop RJ; Toppozini L; Marquardt D; Kučerka N; Harroun TA; Rheinstädter MC
    Biochim Biophys Acta; 2015 Mar; 1848(3):805-12. PubMed ID: 25475646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers.
    Schumann-Gillett A; O'Mara ML
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):210-219. PubMed ID: 30053406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C; Wolf A; Winter R; Gratton E
    Biophys J; 1997 Mar; 72(3):1264-77. PubMed ID: 9138572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
    Stottrup BL; Stevens DS; Keller SL
    Biophys J; 2005 Jan; 88(1):269-76. PubMed ID: 15475588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear.
    Slotte JP
    Biochemistry; 1992 Jun; 31(24):5472-7. PubMed ID: 1610794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol level affects surface charge of lipid membranes in saline solution.
    Magarkar A; Dhawan V; Kallinteri P; Viitala T; Elmowafy M; Róg T; Bunker A
    Sci Rep; 2014 May; 4():5005. PubMed ID: 24845659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Gibbs energy interaction of phospholipid/cholesterol monolayers deposited on mica with probe liquids.
    Jurak M
    Chem Phys Lipids; 2014 Oct; 183():60-7. PubMed ID: 24882251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol oxidase susceptibility of cholesterol and 5-androsten-3 beta-ol in pure sterol monolayers and in mixed monolayers containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Slotte JP
    Biochim Biophys Acta; 1992 Feb; 1124(1):23-8. PubMed ID: 1543722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.