These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29507289)

  • 1. Life times of metastable states guide regulatory signaling in transcriptional riboswitches.
    Helmling C; Klötzner DP; Sochor F; Mooney RA; Wacker A; Landick R; Fürtig B; Heckel A; Schwalbe H
    Nat Commun; 2018 Mar; 9(1):944. PubMed ID: 29507289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient computation of co-transcriptional RNA-ligand interaction dynamics.
    Wolfinger MT; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():70-76. PubMed ID: 29730250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative modeling of the function of kinetically driven transcriptional riboswitches.
    Parra-Rojas C; Fürtig B; Schwalbe H; Hernandez-Vargas EA
    J Theor Biol; 2020 Dec; 506():110406. PubMed ID: 32771533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28703767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic regulation mechanism of the yjdF riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Theor Biol; 2018 Feb; 439():152-159. PubMed ID: 29223402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic regulation mechanism of pbuE riboswitch.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jan; 142(1):015103. PubMed ID: 25573585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch.
    Polaski JT; Holmstrom ED; Nesbitt DJ; Batey RT
    Cell Rep; 2016 May; 15(5):1100-1110. PubMed ID: 27117410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape.
    Hua B; Jones CP; Mitra J; Murray PJ; Rosenthal R; Ferré-D'Amaré AR; Ha T
    Nat Commun; 2020 Sep; 11(1):4531. PubMed ID: 32913225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine.
    Huang W; Kim J; Jha S; Aboul-Ela F
    J Mol Biol; 2012 May; 418(5):331-49. PubMed ID: 22425639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent spin labeling of riboswitch RNAs to obtain long-range structural NMR restraints.
    Helmling C; Bessi I; Wacker A; Schnorr KA; Jonker HR; Richter C; Wagner D; Kreibich M; Schwalbe H
    ACS Chem Biol; 2014 Jun; 9(6):1330-9. PubMed ID: 24673892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.