These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. Tang AD; Makowiecki K; Bartlett C; Rodger J PLoS One; 2015; 10(5):e0126949. PubMed ID: 25993112 [TBL] [Abstract][Full Text] [Related]
3. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Ma J; Zhang Z; Kang L; Geng D; Wang Y; Wang M; Cui H Exp Gerontol; 2014 Oct; 58():256-68. PubMed ID: 25172625 [TBL] [Abstract][Full Text] [Related]
4. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro. Tang AD; Hong I; Boddington LJ; Garrett AR; Etherington S; Reynolds JN; Rodger J Neuroscience; 2016 Oct; 335():64-71. PubMed ID: 27568058 [TBL] [Abstract][Full Text] [Related]
6. Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioral Plasticity in Adult Ephrin-A2A5 Poh EZ; Harvey AR; Makowiecki K; Rodger J eNeuro; 2018; 5(1):. PubMed ID: 29464193 [TBL] [Abstract][Full Text] [Related]
7. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Tang AD; Bennett W; Bindoff AD; Bolland S; Collins J; Langley RC; Garry MI; Summers JJ; Hinder MR; Rodger J; Canty AJ Brain Stimul; 2021; 14(6):1498-1507. PubMed ID: 34653682 [TBL] [Abstract][Full Text] [Related]
8. Low-intensity repetitive transcranial magnetic stimulation requires concurrent visual system activity to modulate visual evoked potentials in adult mice. Makowiecki K; Garrett A; Harvey AR; Rodger J Sci Rep; 2018 Apr; 8(1):5792. PubMed ID: 29643395 [TBL] [Abstract][Full Text] [Related]
9. Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming. Lefaucheur JP; Ayache SS; Sorel M; Farhat WH; Zouari HG; Ciampi de Andrade D; Ahdab R; Ménard-Lefaucheur I; Brugières P; Goujon C Eur J Pain; 2012 Nov; 16(10):1403-13. PubMed ID: 22508405 [TBL] [Abstract][Full Text] [Related]
10. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Shang Y; Wang X; Shang X; Zhang H; Liu Z; Yin T; Zhang T Neurobiol Learn Mem; 2016 Oct; 134 Pt B():369-78. PubMed ID: 27555233 [TBL] [Abstract][Full Text] [Related]
11. Low intensity rTMS has sex-dependent effects on the local response of glia following a penetrating cortical stab injury. Clarke D; Penrose MA; Harvey AR; Rodger J; Bates KA Exp Neurol; 2017 Sep; 295():233-242. PubMed ID: 28624361 [TBL] [Abstract][Full Text] [Related]
12. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Zhang N; Xing M; Wang Y; Tao H; Cheng Y Neuroscience; 2015 Dec; 311():284-91. PubMed ID: 26518460 [TBL] [Abstract][Full Text] [Related]
13. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Heath A; Lindberg DR; Makowiecki K; Gray A; Asp AJ; Rodger J; Choi DS; Croarkin PE Transl Psychiatry; 2018 Jul; 8(1):126. PubMed ID: 29976924 [TBL] [Abstract][Full Text] [Related]
14. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling. Zhai B; Fu J; Xiang S; Shang Y; Yan Y; Yin T; Zhang T Neurosci Res; 2020 Apr; 153():40-47. PubMed ID: 30980860 [TBL] [Abstract][Full Text] [Related]
15. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Kim YH; You SH; Ko MH; Park JW; Lee KH; Jang SH; Yoo WK; Hallett M Stroke; 2006 Jun; 37(6):1471-6. PubMed ID: 16675743 [TBL] [Abstract][Full Text] [Related]
16. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke. Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation. Poh EZ; Hahne D; Moretti J; Harvey AR; Clarke MW; Rodger J Neurochem Int; 2019 Dec; 131():104546. PubMed ID: 31518601 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects. Platz T; Adler-Wiebe M; Roschka S; Lotze M Restor Neurol Neurosci; 2018; 36(1):117-130. PubMed ID: 29439364 [TBL] [Abstract][Full Text] [Related]
20. What does low-intensity rTMS do to the cerebellum? Morellini N; Grehl S; Tang A; Rodger J; Mariani J; Lohof AM; Sherrard RM Cerebellum; 2015 Feb; 14(1):23-6. PubMed ID: 25346177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]