These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 29507519)
1. A family of wave equations with some remarkable properties. da Silva PL; Freire IL; Sampaio JCS Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170763. PubMed ID: 29507519 [TBL] [Abstract][Full Text] [Related]
2. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations. Cooper F; Hyman JM; Khare A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026608. PubMed ID: 11497731 [TBL] [Abstract][Full Text] [Related]
3. Dispersive Hydrodynamics of Soliton Condensates for the Korteweg-de Vries Equation. Congy T; El GA; Roberti G; Tovbis A J Nonlinear Sci; 2023; 33(6):104. PubMed ID: 37736286 [TBL] [Abstract][Full Text] [Related]
4. Negative-order Korteweg-de Vries equations. Qiao Z; Fan E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016601. PubMed ID: 23005555 [TBL] [Abstract][Full Text] [Related]
5. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297 [TBL] [Abstract][Full Text] [Related]
6. A new two-component integrable system with peakon solutions. Xia B; Qiao Z Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140750. PubMed ID: 25792956 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous soliton generation in the higher order Korteweg-de Vries equations on the half-line. Burde GI Chaos; 2012 Mar; 22(1):013138. PubMed ID: 22463014 [TBL] [Abstract][Full Text] [Related]
8. Dispersive shock wave theory for nonintegrable equations. Kamchatnov AM Phys Rev E; 2019 Jan; 99(1-1):012203. PubMed ID: 30780285 [TBL] [Abstract][Full Text] [Related]
9. Kinetic equation for a dense soliton gas. El GA; Kamchatnov AM Phys Rev Lett; 2005 Nov; 95(20):204101. PubMed ID: 16384061 [TBL] [Abstract][Full Text] [Related]
10. Traveling wave solutions of a coupled Schrödinger-Korteweg-de Vries equation by the generalized coupled trial equation method. Shang J; Li W; Li D Heliyon; 2023 May; 9(5):e15695. PubMed ID: 37153403 [TBL] [Abstract][Full Text] [Related]
11. Learning the Nonlinear Solitary Wave Solution of the Korteweg-De Vries Equation with Novel Neural Network Algorithm. Wen Y; Chaolu T Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238458 [TBL] [Abstract][Full Text] [Related]
12. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Shen Y; Kevrekidis PG; Sen S; Hoffman A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797 [TBL] [Abstract][Full Text] [Related]
13. Static algebraic solitons in Korteweg-de Vries type systems and the Hirota transformation. Burde GI Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026615. PubMed ID: 21929136 [TBL] [Abstract][Full Text] [Related]
14. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations. Islam SM; Khan K; Akbar MA Springerplus; 2015; 4():124. PubMed ID: 25810953 [TBL] [Abstract][Full Text] [Related]
15. Exact Travelling-Wave Solutions of the Extended Fifth-Order Korteweg-de Vries Equation via Simple Equations Method (SEsM): The Case of Two Simple Equations. Nikolova EV Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141174 [TBL] [Abstract][Full Text] [Related]
17. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation. Yan Z Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120059. PubMed ID: 23509385 [TBL] [Abstract][Full Text] [Related]
18. Kink-type solutions of the SIdV equation and their properties. Zhang G; He J; Wang L; Mihalache D R Soc Open Sci; 2019 Aug; 6(8):191040. PubMed ID: 31598265 [TBL] [Abstract][Full Text] [Related]
19. Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Ankiewicz A; Kedziora DJ; Chowdury A; Bandelow U; Akhmediev N Phys Rev E; 2016 Jan; 93(1):012206. PubMed ID: 26871072 [TBL] [Abstract][Full Text] [Related]
20. Reflective prolate-spheroidal operators and the KP/KdV equations. Casper WR; Grünbaum FA; Yakimov M; Zurrián I Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18310-18315. PubMed ID: 31455736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]