BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29507548)

  • 21. Global fitting of multiple data frames from SEC-SAXS to investigate the structure of next-generation nanodiscs.
    Barclay A; Tidemand Johansen N; Tidemand FG; Arleth L; Pedersen MC
    Acta Crystallogr D Struct Biol; 2022 Apr; 78(Pt 4):483-493. PubMed ID: 35362471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endothelial nitric oxide synthase oxygenase on lipid nanodiscs: A nano-assembly reflecting native-like function of eNOS.
    AlTawallbeh G; Haque MM; Streletzky KA; Stuehr DJ; Bayachou M
    Biochem Biophys Res Commun; 2017 Dec; 493(4):1438-1442. PubMed ID: 28958937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering.
    Berthaud A; Manzi J; Pérez J; Mangenot S
    J Am Chem Soc; 2012 Jun; 134(24):10080-8. PubMed ID: 22621369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MARTINI bead form factors for the analysis of time-resolved X-ray scattering of proteins.
    Niebling S; Björling A; Westenhoff S
    J Appl Crystallogr; 2014 Aug; 47(Pt 4):1190-1198. PubMed ID: 25242909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Static and dynamic properties of phospholipid bilayer nanodiscs.
    Nakano M; Fukuda M; Kudo T; Miyazaki M; Wada Y; Matsuzaki N; Endo H; Handa T
    J Am Chem Soc; 2009 Jun; 131(23):8308-12. PubMed ID: 19456103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small-angle X-ray scattering of the cholesterol incorporation into human ApoA1-POPC discoidal particles.
    Midtgaard SR; Pedersen MC; Arleth L
    Biophys J; 2015 Jul; 109(2):308-18. PubMed ID: 26200866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins.
    Shih AY; Denisov IG; Phillips JC; Sligar SG; Schulten K
    Biophys J; 2005 Jan; 88(1):548-56. PubMed ID: 15533924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source.
    Shih O; Liao KF; Yeh YQ; Su CJ; Wang CA; Chang JW; Wu WR; Liang CC; Lin CY; Lee TH; Chang CH; Chiang LC; Chang CF; Liu DG; Lee MH; Liu CY; Hsu TW; Mansel B; Ho MC; Shu CY; Lee F; Yen E; Lin TC; Jeng U
    J Appl Crystallogr; 2022 Apr; 55(Pt 2):340-352. PubMed ID: 35497659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic-resolution structural information from scattering experiments on macromolecules in solution.
    Köfinger J; Hummer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052712. PubMed ID: 23767571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs.
    Ravula T; Ramadugu SK; Di Mauro G; Ramamoorthy A
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11466-11470. PubMed ID: 28714233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid-based nanodiscs as models for studying mesoscale coalescence--a transport limited case.
    Hu A; Fan TH; Katsaras J; Xia Y; Li M; Nieh MP
    Soft Matter; 2014 Jul; 10(28):5055-60. PubMed ID: 24691415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry.
    Padmanabha Das KM; Shih WM; Wagner G; Nasr ML
    Front Bioeng Biotechnol; 2020; 8():539. PubMed ID: 32596222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray diffraction of lipid model membranes.
    Tyler AI; Law RV; Seddon JM
    Methods Mol Biol; 2015; 1232():199-225. PubMed ID: 25331138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An
    Andrews RN; Serio J; Muralidharan G; Ilavsky J
    J Appl Crystallogr; 2017 Jun; 50(Pt 3):734-740. PubMed ID: 28656039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity.
    Wadsäter M; Barker R; Mortensen K; Feidenhans'l R; Cárdenas M
    Langmuir; 2013 Mar; 29(9):2871-80. PubMed ID: 23373466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs.
    Penny WM; Palmer CP
    Electrophoresis; 2018 Mar; 39(5-6):844-852. PubMed ID: 29072338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 Sep; 1788(9):1877-89. PubMed ID: 19616506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in nanodisc technology for membrane protein studies (2012-2017).
    Rouck JE; Krapf JE; Roy J; Huff HC; Das A
    FEBS Lett; 2017 Jul; 591(14):2057-2088. PubMed ID: 28581067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DC(13)PC bilayers from anomalous swelling to main transition: an X-ray scattering investigation.
    Brocca P; Cantù L; Corti M; Del Favero E; Motta S; Nodari MC
    J Colloid Interface Sci; 2007 Aug; 312(1):34-41. PubMed ID: 17258762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.