These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2950775)
1. The mitochondrial adenosine 5'-triphosphatase in slow and fast heart rate hearts. Rouslin W Am J Physiol; 1987 Mar; 252(3 Pt 2):H622-7. PubMed ID: 2950775 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the mitochondrial adenosine 5'-triphosphatase in situ during ischemia and in vitro in intact and sonicated mitochondria from slow and fast heart-rate hearts. Rouslin W; Broge CW Arch Biochem Biophys; 1990 Jul; 280(1):103-11. PubMed ID: 2141243 [TBL] [Abstract][Full Text] [Related]
3. Factors affecting the species-homologous and species-heterologous binding of mitochondrial ATPase inhibitor, IF1, to the mitochondrial ATPase of slow and fast heart-rate hearts. Rouslin W; Broge CW Arch Biochem Biophys; 1993 Jun; 303(2):443-50. PubMed ID: 8512326 [TBL] [Abstract][Full Text] [Related]
4. Regulation of mitochondrial matrix pH and adenosine 5'-triphosphatase activity during ischemia in slow heart-rate hearts. Role of Pi/H+ symport. Rouslin W; Broge CW J Biol Chem; 1989 Sep; 264(26):15224-9. PubMed ID: 2527849 [TBL] [Abstract][Full Text] [Related]
5. IF1 function in situ in uncoupler-challenged ischemic rabbit, rat, and pigeon hearts. Rouslin W; Broge CW J Biol Chem; 1996 Sep; 271(39):23638-41. PubMed ID: 8798581 [TBL] [Abstract][Full Text] [Related]
6. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts. Rouslin W J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts. Rouslin W; Broge CW Am J Physiol; 1993 Jan; 264(1 Pt 1):C209-16. PubMed ID: 8430769 [TBL] [Abstract][Full Text] [Related]
8. ATPase activity, IF1 content, and proton conductivity of ESMP from control and ischemic slow and fast heart-rate hearts. Rouslin W; Broge CW; Guerrieri F; Capozza G J Bioenerg Biomembr; 1995 Aug; 27(4):459-66. PubMed ID: 8595981 [TBL] [Abstract][Full Text] [Related]
9. Content and binding characteristics of the mitochondrial ATPase inhibitor, IF1, in the tissues of several slow and fast heart-rate homeothermic species and in two poikilotherms. Rouslin W; Frank GD; Broge CW J Bioenerg Biomembr; 1995 Feb; 27(1):117-25. PubMed ID: 7629043 [TBL] [Abstract][Full Text] [Related]
10. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle. Rouslin W; Broge CW Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991 [TBL] [Abstract][Full Text] [Related]
11. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts. Rouslin W; Broge CW; Grupp IL Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059 [TBL] [Abstract][Full Text] [Related]
12. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia. Rouslin W; Pullman ME J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823 [TBL] [Abstract][Full Text] [Related]
13. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions. Rouslin W J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle. Rouslin W J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098 [TBL] [Abstract][Full Text] [Related]
15. Why the mitochondrial ATPase inhibitor IF1 fails to inhibit the mitochondrial ATPase in situ in fast heart-rate mammalian and avian hearts. Rouslin W; Broge CW Ann N Y Acad Sci; 1992 Nov; 671():505-6. PubMed ID: 1288353 [No Abstract] [Full Text] [Related]
16. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning. Vander Heide RS; Hill ML; Reimer KA; Jennings RB J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218 [TBL] [Abstract][Full Text] [Related]
17. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Rouslin W; Erickson JL; Solaro RJ Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313 [TBL] [Abstract][Full Text] [Related]
18. Why are ATP depletion rates in situ in ischemic myocardium so much lower than one might predict from the activity of the mitochondrial ATPase in sonicated heart mitochondria? Rouslin W; Long RB; Broge CW J Mol Cell Cardiol; 1997 Jun; 29(6):1505-10. PubMed ID: 9220337 [No Abstract] [Full Text] [Related]
19. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Gomez-Fernandez JC; Harris DA Biochem J; 1978 Dec; 176(3):967-75. PubMed ID: 154888 [TBL] [Abstract][Full Text] [Related]
20. Involvement of the endogenous inhibitor protein in the MgATP-induced inhibition of soluble mitochondrial adenosine triphosphatase activity. Lowe PN; Beechey RB Biochem J; 1981 Dec; 200(3):655-61. PubMed ID: 6211169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]