BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29507839)

  • 1. Investigating the molecular basis for heterophylly in the aquatic plant
    He D; Guo P; Gugger PF; Guo Y; Liu X; Chen J
    PeerJ; 2018; 6():e4448. PubMed ID: 29507839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular adaptation of rbcL in the heterophyllous aquatic plant Potamogeton.
    Iida S; Miyagi A; Aoki S; Ito M; Kadono Y; Kosuge K
    PLoS One; 2009; 4(2):e4633. PubMed ID: 19247501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BIOCHEMICAL HETEROPHYLLY AND FLAVONOID EVOLUTION IN NORTH AMERICAN POTAMOGETON (POTAMOGETONACEAE).
    Les DH; Sheridan DJ
    Am J Bot; 1990 Apr; 77(4):453-465. PubMed ID: 30139166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants.
    Hu Y; Tang F; Zhang D; Shen S; Peng X
    Hortic Res; 2023 Nov; 10(11):uhad212. PubMed ID: 38046852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae.
    Lindqvist C; De Laet J; Haynes RR; Aagesen L; Keener BR; Albert VA
    Cladistics; 2006 Dec; 22(6):568-588. PubMed ID: 34892900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq.
    Cheng Q; Bai S; Ge G; Li P; Liu L; Zhang C; Jia Y
    BMC Genomics; 2018 Nov; 19(1):807. PubMed ID: 30404602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).
    Li CF; Xu YX; Ma JQ; Jin JQ; Huang DJ; Yao MZ; Ma CL; Chen L
    BMC Plant Biol; 2016 Sep; 16(1):195. PubMed ID: 27609021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis.
    Wang X; Zhou C; Yang X; Miao D; Zhang Y
    PLoS One; 2015; 10(8):e0135724. PubMed ID: 26305373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis.
    Xu Z; Dong M; Peng X; Ku W; Zhao Y; Yang G
    Ecotoxicol Environ Saf; 2019 Apr; 171():301-312. PubMed ID: 30612018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by
    Ntambo MS; Meng JY; Rott PC; Henry RJ; Zhang HL; Gao SJ
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant.
    Shi Y; Sun H; Wang X; Jin W; Chen Q; Yuan Z; Yu H
    PLoS One; 2019; 14(5):e0217204. PubMed ID: 31116769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia.
    Hsu TC; Liu HC; Wang JS; Chen RW; Wang YC; Lin BL
    Plant Mol Biol; 2001 Dec; 47(6):703-15. PubMed ID: 11785932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction.
    Liu CH; Fan C
    Front Plant Sci; 2016; 7():203. PubMed ID: 26955375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113.
    Malviya MK; Li CN; Solanki MK; Singh RK; Htun R; Singh P; Verma KK; Yang LT; Li YR
    PLoS One; 2020; 15(4):e0231206. PubMed ID: 32267863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of starch and sucrose metabolism across bulb development in Sagittaria sagittifolia.
    Gao M; Zhang S; Luo C; He X; Wei S; Jiang W; He F; Lin Z; Yan M; Dong W
    Gene; 2018 Apr; 649():99-112. PubMed ID: 29374598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq.
    Ni Y; Guo N; Zhao Q; Guo Y
    BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.