These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 29507921)
21. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies. Chen CY; Lee PJ; Tan CH; Lo YC; Huang CC; Show PL; Lin CH; Chang JS Biotechnol J; 2015 Jun; 10(6):905-14. PubMed ID: 25865941 [TBL] [Abstract][Full Text] [Related]
22. Size exclusion chromatography--a blessing and a curse of science and technology of synthetic polymers. Berek D J Sep Sci; 2010 Feb; 33(3):315-35. PubMed ID: 20127919 [TBL] [Abstract][Full Text] [Related]
23. Pyrolysis of microalgal biomass in carbon dioxide environment. Cho SH; Kim KH; Jeon YJ; Kwon EE Bioresour Technol; 2015 Oct; 193():185-91. PubMed ID: 26133476 [TBL] [Abstract][Full Text] [Related]
24. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Araujo GS; Matos LJ; Fernandes JO; Cartaxo SJ; Gonçalves LR; Fernandes FA; Farias WR Ultrason Sonochem; 2013 Jan; 20(1):95-8. PubMed ID: 22938999 [TBL] [Abstract][Full Text] [Related]
25. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae. Asrar P; Sucur M; Hashemi N Biosensors (Basel); 2015 Jun; 5(2):308-18. PubMed ID: 26075506 [TBL] [Abstract][Full Text] [Related]
26. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. dos Santos RR; Moreira DM; Kunigami CN; Aranda DA; Teixeira CM Ultrason Sonochem; 2015 Jan; 22():95-9. PubMed ID: 24910443 [TBL] [Abstract][Full Text] [Related]
27. Dielectrophoretic sorting of cells, fine particles, and macromolecules in the microchip format. Gonzalez CF; Remcho VT J Capill Electrophor Microchip Technol; 2006; 9(5-6):71-7. PubMed ID: 17094291 [TBL] [Abstract][Full Text] [Related]
28. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139 [TBL] [Abstract][Full Text] [Related]
29. Optimization of protein electroextraction from microalgae by a flow process. Coustets M; Joubert-Durigneux V; Hérault J; Schoefs B; Blanckaert V; Garnier JP; Teissié J Bioelectrochemistry; 2015 Jun; 103():74-81. PubMed ID: 25216607 [TBL] [Abstract][Full Text] [Related]
30. Enzyme-assisted aqueous extraction of lipid from microalgae. Liang K; Zhang Q; Cong W J Agric Food Chem; 2012 Nov; 60(47):11771-6. PubMed ID: 23072503 [TBL] [Abstract][Full Text] [Related]
31. Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Yuan D; Zhao Q; Yan S; Tang SY; Zhang Y; Yun G; Nguyen NT; Zhang J; Li M; Li W Lab Chip; 2019 Sep; 19(17):2811-2821. PubMed ID: 31312819 [TBL] [Abstract][Full Text] [Related]
32. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Gorain PC; Bagchi SK; Mallick N Environ Technol; 2013; 34(13-16):1887-94. PubMed ID: 24350442 [TBL] [Abstract][Full Text] [Related]
33. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Postma PR; Miron TL; Olivieri G; Barbosa MJ; Wijffels RH; Eppink MHM Bioresour Technol; 2015 May; 184():297-304. PubMed ID: 25280602 [TBL] [Abstract][Full Text] [Related]
34. Mechanically-driven phase separation in a growing bacterial colony. Ghosh P; Mondal J; Ben-Jacob E; Levine H Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2166-73. PubMed ID: 25870260 [TBL] [Abstract][Full Text] [Related]
35. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967 [TBL] [Abstract][Full Text] [Related]
36. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Moradi-Kheibari N; Ahmadzadeh H; Hosseini M Bioprocess Biosyst Eng; 2017 Sep; 40(9):1363-1373. PubMed ID: 28593457 [TBL] [Abstract][Full Text] [Related]
37. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Lee J; Cho DH; Ramanan R; Kim BH; Oh HM; Kim HS Bioresour Technol; 2013 Mar; 131():195-201. PubMed ID: 23347927 [TBL] [Abstract][Full Text] [Related]
38. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016 May; 46(4):368-75. PubMed ID: 25844976 [TBL] [Abstract][Full Text] [Related]
39. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors. Luangpipat T; Chisti Y J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890 [TBL] [Abstract][Full Text] [Related]
40. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Aguirre AM; Bassi A Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]