BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29508223)

  • 1. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.
    Harvey DJ; Seabright GE; Vasiljevic S; Crispin M; Struwe WB
    J Am Soc Mass Spectrom; 2018 May; 29(5):972-988. PubMed ID: 29508223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans.
    Harvey DJ; Scarff CA; Edgeworth M; Struwe WB; Pagel K; Thalassinos K; Crispin M; Scrivens J
    J Mass Spectrom; 2016 Mar; 51(3):219-35. PubMed ID: 26956389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans.
    Harvey DJ; Scarff CA; Edgeworth M; Pagel K; Thalassinos K; Struwe WB; Crispin M; Scrivens JH
    J Mass Spectrom; 2016 Nov; 51(11):1064-1079. PubMed ID: 27477117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: Part 7. Reduced glycans.
    Harvey DJ; Abrahams JL
    Rapid Commun Mass Spectrom; 2016 Mar; 30(5):627-34. PubMed ID: 26842584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray.
    Harvey DJ
    J Mass Spectrom; 2000 Oct; 35(10):1178-90. PubMed ID: 11110090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
    Harvey DJ; Watanabe Y; Allen JD; Rudd P; Pagel K; Crispin M; Struwe WB
    J Am Soc Mass Spectrom; 2018 Jun; 29(6):1250-1261. PubMed ID: 29675741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation of negative ions from N-linked carbohydrates: part 6. Glycans containing one N-acetylglucosamine in the core.
    Harvey DJ; Edgeworth M; Krishna BA; Bonomelli C; Allman SA; Crispin M; Scrivens JH
    Rapid Commun Mass Spectrom; 2014 Sep; 28(18):2008-18. PubMed ID: 25132301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry.
    Morrison KA; Clowers BH
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1236-1241. PubMed ID: 28421405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Studies of Fucosylated N-Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions.
    Harvey DJ; Struwe WB
    J Am Soc Mass Spectrom; 2018 Jun; 29(6):1179-1193. PubMed ID: 29790113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Travelling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans.
    Harvey DJ; Scarff CA; Edgeworth M; Crispin M; Scanlan CN; Sobott F; Allman S; Baruah K; Pritchard L; Scrivens JH
    Electrophoresis; 2013 Aug; 34(16):2368-78. PubMed ID: 23712623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna.
    Harvey DJ; Jaeken J; Butler M; Armitage AJ; Rudd PM; Dwek RA
    J Mass Spectrom; 2010 May; 45(5):528-35. PubMed ID: 20446311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS.
    Harvey DJ
    Mass Spectrom Rev; 2020 Sep; 39(5-6):586-679. PubMed ID: 32329121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MALDI-MS/MS with traveling wave ion mobility for the structural analysis of N-linked glycans.
    Harvey DJ; Scarff CA; Crispin M; Scanlan CN; Bonomelli C; Scrivens JH
    J Am Soc Mass Spectrom; 2012 Nov; 23(11):1955-66. PubMed ID: 22993039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postsource decay fragmentation of N-linked carbohydrates from ovalbumin and related glycoproteins.
    Harvey DJ
    J Am Soc Mass Spectrom; 2000 Jun; 11(6):572-7. PubMed ID: 10833031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans.
    Harvey DJ
    J Am Soc Mass Spectrom; 2005 May; 16(5):631-46. PubMed ID: 15862765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion Mobility Mass Spectrometry for Ion Recovery and Clean-Up of MS and MS/MS Spectra Obtained from Low Abundance Viral Samples.
    Harvey DJ; Crispin M; Bonomelli C; Scrivens JH
    J Am Soc Mass Spectrom; 2015 Oct; 26(10):1754-67. PubMed ID: 26204966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of Mannose-Rich Glycans Using Collision-Based and Electron-Based Ion Activation Methods.
    Wong HK; Chen X; Wu R; Wong YE; Hung YW; Chan TD
    J Am Soc Mass Spectrom; 2022 May; 33(5):803-812. PubMed ID: 35380839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.
    Maslen S; Sadowski P; Adam A; Lilley K; Stephens E
    Anal Chem; 2006 Dec; 78(24):8491-8. PubMed ID: 17165844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collision cross sections of high-mannose N-glycans in commonly observed adduct states--identification of gas-phase conformers unique to [M-H](-) ions.
    Struwe WB; Benesch JL; Harvey DJ; Pagel K
    Analyst; 2015 Oct; 140(20):6799-803. PubMed ID: 26159123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.
    Nishikaze T; Kaneshiro K; Kawabata S; Tanaka K
    Anal Chem; 2012 Nov; 84(21):9453-61. PubMed ID: 23072501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.