BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 29508286)

  • 1. Comparison of Gene Expression Profiles in Nonmodel Eukaryotic Organisms with RNA-Seq.
    Cheng H; Wang Y; Sun MA
    Methods Mol Biol; 2018; 1751():3-16. PubMed ID: 29508286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.
    Makita Y; Kawashima M; Lau NS; Othman AS; Matsui M
    BMC Genomics; 2018 Jan; 19(Suppl 1):922. PubMed ID: 29363422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing a transcriptome next-generation sequencing project for a nonmodel plant species.
    Strickler SR; Bombarely A; Mueller LA
    Am J Bot; 2012 Feb; 99(2):257-66. PubMed ID: 22268224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Gene Expression Analysis of Plants.
    Arick M; Hsu CY
    Methods Mol Biol; 2018; 1783():279-298. PubMed ID: 29767368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis.
    Chow KS; Ghazali AK; Hoh CC; Mohd-Zainuddin Z
    BMC Res Notes; 2014 Feb; 7():69. PubMed ID: 24484543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes.
    Ockendon NF; O'Connell LA; Bush SJ; Monzón-Sandoval J; Barnes H; Székely T; Hofmann HA; Dorus S; Urrutia AO
    Mol Ecol Resour; 2016 Mar; 16(2):446-58. PubMed ID: 26358618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Throughput Sequencing-Based Approaches for Gene Expression Analysis.
    Reddy RRS; Ramanujam MV
    Methods Mol Biol; 2018; 1783():299-323. PubMed ID: 29767369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
    Bayega A; Fahiminiya S; Oikonomopoulos S; Ragoussis J
    Methods Mol Biol; 2018; 1783():209-241. PubMed ID: 29767365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly.
    Rivera-Vicéns RE; Garcia-Escudero CA; Conci N; Eitel M; Wörheide G
    Mol Ecol Resour; 2022 Jul; 22(5):2070-2086. PubMed ID: 35119207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes.
    Hook SE; Twine NA; Simpson SL; Spadaro DA; Moncuquet P; Wilkins MR
    Aquat Toxicol; 2014 Aug; 153():73-88. PubMed ID: 24434169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aquatic animals' transcriptome resource for comparative functional analysis.
    Chou CH; Huang HY; Huang WC; Hsu SD; Hsiao CD; Liu CY; Chen YH; Liu YC; Huang WY; Lee ML; Chen YC; Huang HD
    BMC Genomics; 2018 May; 19(Suppl 2):103. PubMed ID: 29764375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.