These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29508291)

  • 1. RNA-Seq-Based Transcript Structure Analysis with TrBorderExt.
    Wang Y; Sun MA; White AP
    Methods Mol Biol; 2018; 1751():89-99. PubMed ID: 29508291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens.
    Prados J; Linder P; Redder P
    BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data.
    Wang Y; MacKenzie KD; White AP
    BMC Genomics; 2015 May; 16(1):359. PubMed ID: 25947005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori.
    Bischler T; Tan HS; Nieselt K; Sharma CM
    Methods; 2015 Sep; 86():89-101. PubMed ID: 26091613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites.
    Rosinski-Chupin I; Soutourina O; Martin-Verstraete I
    Methods Enzymol; 2014; 549():3-27. PubMed ID: 25432742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome.
    Ettwiller L; Buswell J; Yigit E; Schildkraut I
    BMC Genomics; 2016 Mar; 17():199. PubMed ID: 26951544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.
    Promworn Y; Kaewprommal P; Shaw PJ; Intarapanich A; Tongsima S; Piriyapongsa J
    PLoS One; 2017; 12(5):e0178483. PubMed ID: 28542466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput detection of RNA processing in bacteria.
    Gill EE; Chan LS; Winsor GL; Dobson N; Lo R; Ho Sui SJ; Dhillon BK; Taylor PK; Shrestha R; Spencer C; Hancock REW; Unrau PJ; Brinkman FSL
    BMC Genomics; 2018 Mar; 19(1):223. PubMed ID: 29587634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq.
    Policastro RA; Raborn RT; Brendel VP; Zentner GE
    Genome Res; 2020 Jun; 30(6):910-923. PubMed ID: 32660958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The principle of dRNA-seq and its applications in prokaryotic tran-scriptome analyses].
    Hou ZW; Wang Y; Gao H; Hou SW
    Yi Chuan; 2013 Aug; 35(8):983-91. PubMed ID: 23956086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping 5'-Ends and Their Phosphorylation State With EMOTE, TSS-EMOTE, and nEMOTE.
    Redder P
    Methods Enzymol; 2018; 612():361-391. PubMed ID: 30502949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.
    Zhang W; Chang JW; Lin L; Minn K; Wu B; Chien J; Yong J; Zheng H; Kuang R
    PLoS Comput Biol; 2015 Dec; 11(12):e1004465. PubMed ID: 26699225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).
    Matteau D; Rodrigue S
    Methods Mol Biol; 2015; 1334():143-59. PubMed ID: 26404148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TSSAR: TSS annotation regime for dRNA-seq data.
    Amman F; Wolfinger MT; Lorenz R; Hofacker IL; Stadler PF; Findeiß S
    BMC Bioinformatics; 2014 Mar; 15():89. PubMed ID: 24674136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential RNA-seq: the approach behind and the biological insight gained.
    Sharma CM; Vogel J
    Curr Opin Microbiol; 2014 Jun; 19():97-105. PubMed ID: 25024085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Profiling of Transcription Initiation with STRIPE-seq.
    Policastro RA; Zentner GE
    Methods Mol Biol; 2022; 2477():21-34. PubMed ID: 35524109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation.
    Wittchen M; Busche T; Gaspar AH; Lee JH; Ton-That H; Kalinowski J; Tauch A
    BMC Genomics; 2018 Jan; 19(1):82. PubMed ID: 29370758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled Transcriptomics for Differential Expression Analysis and Determination of Transcription Start Sites: Design and Bioinformatics.
    Rodríguez-García A; Sola-Landa A; Pérez-Redondo R
    Methods Mol Biol; 2021; 2296():263-278. PubMed ID: 33977454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RES-Scanner: a software package for genome-wide identification of RNA-editing sites.
    Wang Z; Lian J; Li Q; Zhang P; Zhou Y; Zhan X; Zhang G
    Gigascience; 2016 Aug; 5(1):37. PubMed ID: 27538485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.