These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29508399)

  • 1. Music training and child development: a review of recent findings from a longitudinal study.
    Habibi A; Damasio A; Ilari B; Elliott Sachs M; Damasio H
    Ann N Y Acad Sci; 2018 Mar; ():. PubMed ID: 29508399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Childhood Music Training Induces Change in Micro and Macroscopic Brain Structure: Results from a Longitudinal Study.
    Habibi A; Damasio A; Ilari B; Veiga R; Joshi AA; Leahy RM; Haldar JP; Varadarajan D; Bhushan C; Damasio H
    Cereb Cortex; 2018 Dec; 28(12):4336-4347. PubMed ID: 29126181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Music Training on Inhibitory Control and Associated Neural Networks in School-Aged Children: A Longitudinal Study.
    Hennessy SL; Sachs ME; Ilari B; Habibi A
    Front Neurosci; 2019; 13():1080. PubMed ID: 31680820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An equal start: absence of group differences in cognitive, social, and neural measures prior to music or sports training in children.
    Habibi A; Ilari B; Crimi K; Metke M; Kaplan JT; Joshi AA; Leahy RM; Shattuck DW; Choi SY; Haldar JP; Ficek B; Damasio A; Damasio H
    Front Hum Neurosci; 2014; 8():690. PubMed ID: 25249961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of accelerated auditory processing in children engaged in music training.
    Habibi A; Cahn BR; Damasio A; Damasio H
    Dev Cogn Neurosci; 2016 Oct; 21():1-14. PubMed ID: 27490304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task.
    Sachs M; Kaplan J; Der Sarkissian A; Habibi A
    PLoS One; 2017; 12(10):e0187254. PubMed ID: 29084283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and neural correlates of executive functioning in musicians and non-musicians.
    Zuk J; Benjamin C; Kenyon A; Gaab N
    PLoS One; 2014; 9(6):e99868. PubMed ID: 24937544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are there pre-existing neural, cognitive, or motoric markers for musical ability?
    Norton A; Winner E; Cronin K; Overy K; Lee DJ; Schlaug G
    Brain Cogn; 2005 Nov; 59(2):124-34. PubMed ID: 16054741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of cortical thickness increases in bilateral auditory brain structures following piano learning in older adults.
    Worschech F; Altenmüller E; Jünemann K; Sinke C; Krüger THC; Scholz DS; Müller CAH; Kliegel M; James CE; Marie D
    Ann N Y Acad Sci; 2022 Jul; 1513(1):21-30. PubMed ID: 35292982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical learning and auditory processing in children with music training: An ERP study.
    Mandikal Vasuki PR; Sharma M; Ibrahim R; Arciuli J
    Clin Neurophysiol; 2017 Jul; 128(7):1270-1281. PubMed ID: 28545016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in auditory cortical thickness following music training in children: converging longitudinal and cross-sectional results.
    Habibi A; Ilari B; Heine K; Damasio H
    Brain Struct Funct; 2020 Nov; 225(8):2463-2474. PubMed ID: 32902662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythm and Melody Tasks for School-Aged Children With and Without Musical Training: Age-Equivalent Scores and Reliability.
    Ireland K; Parker A; Foster N; Penhune V
    Front Psychol; 2018; 9():426. PubMed ID: 29674984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promises of formal and informal musical activities in advancing neurocognitive development throughout childhood.
    Putkinen V; Tervaniemi M; Saarikivi K; Huotilainen M
    Ann N Y Acad Sci; 2015 Mar; 1337():153-62. PubMed ID: 25773630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can you hear a difference? Neuronal correlates of melodic deviance processing in children.
    Wehrum S; Degé F; Ott U; Walter B; Stippekohl B; Kagerer S; Schwarzer G; Vaitl D; Stark R
    Brain Res; 2011 Jul; 1402():80-92. PubMed ID: 21676378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced recognition of vocal emotions in individuals with naturally good musical abilities.
    Correia AI; Castro SL; MacGregor C; Müllensiefen D; Schellenberg EG; Lima CF
    Emotion; 2022 Aug; 22(5):894-906. PubMed ID: 32718172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.
    Brown CJ; Jeon EK; Driscoll V; Mussoi B; Deshpande SB; Gfeller K; Abbas PJ
    Ear Hear; 2017; 38(2):e74-e84. PubMed ID: 28225736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the benefits of musical training: effects on oscillatory brain activity.
    Trainor LJ; Shahin AJ; Roberts LE
    Ann N Y Acad Sci; 2009 Jul; 1169():133-42. PubMed ID: 19673769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orff-Based Music Training Enhances Children's Manual Dexterity and Bimanual Coordination.
    Martins M; Neves L; Rodrigues P; Vasconcelos O; Castro SL
    Front Psychol; 2018; 9():2616. PubMed ID: 30622496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study.
    Putkinen V; Tervaniemi M; Saarikivi K; Ojala P; Huotilainen M
    Dev Sci; 2014 Mar; 17(2):282-97. PubMed ID: 24283257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurobiological predispositions for musicality: White matter in infancy predicts school-age music aptitude.
    Zuk J; Vanderauwera J; Turesky T; Yu X; Gaab N
    Dev Sci; 2023 Sep; 26(5):e13365. PubMed ID: 36571291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.