These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29508417)

  • 1. Some methods for heterogeneous treatment effect estimation in high dimensions.
    Powers S; Qian J; Jung K; Schuler A; Shah NH; Hastie T; Tibshirani R
    Stat Med; 2018 May; 37(11):1767-1787. PubMed ID: 29508417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases.
    Wendling T; Jung K; Callahan A; Schuler A; Shah NH; Gallego B
    Stat Med; 2018 Oct; 37(23):3309-3324. PubMed ID: 29862536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous record linkage and causal inference with propensity score subclassification.
    Wortman JH; Reiter JP
    Stat Med; 2018 Oct; 37(24):3533-3546. PubMed ID: 30069901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive contrast weighted learning for multi-stage multi-treatment decision-making.
    Tao Y; Wang L
    Biometrics; 2017 Mar; 73(1):145-155. PubMed ID: 27213913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced precision in the analysis of randomized trials with ordinal outcomes.
    Díaz I; Colantuoni E; Rosenblum M
    Biometrics; 2016 Jun; 72(2):422-31. PubMed ID: 26576013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical and scientific inference.
    Ahlbom A
    J Intern Med; 2014 Sep; 276(3):238-9. PubMed ID: 25040681
    [No Abstract]   [Full Text] [Related]  

  • 9. Estimating the effect of treatment on binary outcomes using full matching on the propensity score.
    Austin PC; Stuart EA
    Stat Methods Med Res; 2017 Dec; 26(6):2505-2525. PubMed ID: 26329750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative targeted learning using regression shrinkage.
    Schnitzer ME; Cefalu M
    Stat Med; 2018 Feb; 37(4):530-543. PubMed ID: 29094375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we learn individual-level treatment policies from clinical data?
    Shalit U
    Biostatistics; 2020 Apr; 21(2):359-362. PubMed ID: 31742359
    [No Abstract]   [Full Text] [Related]  

  • 12. Using observational data for personalized medicine when clinical trial evidence is limited.
    Gershman B; Guo DP; Dahabreh IJ
    Fertil Steril; 2018 Jun; 109(6):946-951. PubMed ID: 29935652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records.
    Low YS; Gallego B; Shah NH
    J Comp Eff Res; 2016 Mar; 5(2):179-92. PubMed ID: 26634383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation study comparing exposure matching with regression adjustment in an observational safety setting with group sequential monitoring.
    Stratton KG; Cook AJ; Jackson LA; Nelson JC
    Stat Med; 2015 Mar; 34(7):1117-33. PubMed ID: 25510526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using pilot data to size a two-arm randomized trial to find a nearly optimal personalized treatment strategy.
    Laber EB; Zhao YQ; Regh T; Davidian M; Tsiatis A; Stanford JB; Zeng D; Song R; Kosorok MR
    Stat Med; 2016 Apr; 35(8):1245-56. PubMed ID: 26506890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning end-to-end patient representations through self-supervised covariate balancing for causal treatment effect estimation.
    Tesei G; Giampanis S; Shi J; Norgeot B
    J Biomed Inform; 2023 Apr; 140():104339. PubMed ID: 36940895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of modern approaches for identifying and evaluating heterogeneous treatment effects from clinical data.
    Lipkovich I; Svensson D; Ratitch B; Dmitrienko A
    Clin Trials; 2023 Aug; 20(4):380-393. PubMed ID: 37203150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Real-World Patient Data to Individualized Treatment Effects Using Machine Learning: Current and Future Methods to Address Underlying Challenges.
    Bica I; Alaa AM; Lambert C; van der Schaar M
    Clin Pharmacol Ther; 2021 Jan; 109(1):87-100. PubMed ID: 32449163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2016 Dec; 22(6):871-881. PubMed ID: 27421786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal inference using multivariate generalized linear mixed-effects models.
    Xu Y; Kim JS; Hummers LK; Shah AA; Zeger SL
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39319549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.