These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29508424)

  • 1. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes.
    Austin PC
    Stat Med; 2018 May; 37(11):1874-1894. PubMed ID: 29508424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes.
    Austin PC
    Stat Methods Med Res; 2019 Aug; 28(8):2348-2367. PubMed ID: 29869566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing covariate balance when using the generalized propensity score with quantitative or continuous exposures.
    Austin PC
    Stat Methods Med Res; 2019 May; 28(5):1365-1377. PubMed ID: 29415624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of different propensity score methods for estimating marginal hazard ratios.
    Austin PC
    Stat Med; 2013 Jul; 32(16):2837-49. PubMed ID: 23239115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the effect of treatment on binary outcomes using full matching on the propensity score.
    Austin PC; Stuart EA
    Stat Methods Med Res; 2017 Dec; 26(6):2505-2525. PubMed ID: 26329750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies.
    Austin PC
    Stat Med; 2010 Sep; 29(20):2137-48. PubMed ID: 20108233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal full matching for survival outcomes: a method that merits more widespread use.
    Austin PC; Stuart EA
    Stat Med; 2015 Dec; 34(30):3949-67. PubMed ID: 26250611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance estimators for weighted and stratified linear dose-response function estimators using generalized propensity score.
    Garès V; Chauvet G; Hajage D
    Biom J; 2022 Jan; 64(1):33-56. PubMed ID: 34327720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing confounding in comparative observational studies with time-to-event outcomes: An extensive comparison of covariate balancing methods using Monte Carlo simulation.
    Cafri G; Fortin S; Austin PC
    Stat Methods Med Res; 2024 Aug; 33(8):1437-1460. PubMed ID: 39053570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse Probability Weights for Quasicontinuous Ordinal Exposures With a Binary Outcome: Method Comparison and Case Study.
    Sack DE; Shepherd BE; Audet CM; De Schacht C; Samuels LR
    Am J Epidemiol; 2023 Jul; 192(7):1192-1206. PubMed ID: 37067471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of regression splines for propensity score adjustment in post-market safety analysis with multiple treatments.
    Tian Y; Baro E; Zhang R
    J Biopharm Stat; 2019; 29(5):810-821. PubMed ID: 31502924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
    Austin PC; Stuart EA
    Stat Med; 2015 Dec; 34(28):3661-79. PubMed ID: 26238958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes.
    Austin PC; Stuart EA
    Stat Methods Med Res; 2017 Aug; 26(4):1654-1670. PubMed ID: 25934643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.
    Austin PC; Schuster T
    Stat Methods Med Res; 2016 Oct; 25(5):2214-2237. PubMed ID: 24463885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.
    Austin PC
    Stat Methods Med Res; 2017 Feb; 26(1):201-222. PubMed ID: 25038071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of 12 algorithms for matching on the propensity score.
    Austin PC
    Stat Med; 2014 Mar; 33(6):1057-69. PubMed ID: 24123228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach for propensity score matching and stratification for multiple treatments: Application to an electronic health record-derived study.
    Brown DW; DeSantis SM; Greene TJ; Maroufy V; Yaseen A; Wu H; Williams G; Swartz MD
    Stat Med; 2020 Jul; 39(17):2308-2323. PubMed ID: 32297677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propensity score analysis methods with balancing constraints: A Monte Carlo study.
    Li Y; Li L
    Stat Methods Med Res; 2021 Apr; 30(4):1119-1142. PubMed ID: 33525962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance of marginal structural models for estimating risk differences and relative risks using weighted univariate generalized linear models.
    Austin PC
    Stat Methods Med Res; 2024 Jun; 33(6):1055-1068. PubMed ID: 38655786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.