These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29508448)

  • 21. FLEXc: protein flexibility prediction using context-based statistics, predicted structural features, and sequence information.
    Yaseen A; Nijim M; Williams B; Qian L; Li M; Wang J; Li Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):281. PubMed ID: 27587065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.
    Babaei S; Geranmayeh A; Seyyedsalehi SA
    Comput Methods Programs Biomed; 2010 Dec; 100(3):237-47. PubMed ID: 20472322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures.
    Hanson J; Paliwal K; Zhou Y
    J Chem Inf Model; 2018 Nov; 58(11):2369-2376. PubMed ID: 30395465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks.
    Shepherd AJ; Gorse D; Thornton JM
    Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Backbone Dihedral Angle Prediction.
    Zimmermann O
    Methods Mol Biol; 2017; 1484():65-82. PubMed ID: 27787821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel model-based on FCM-LM algorithm for prediction of protein folding rate.
    Liu L; Ma M; Cui J
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750012. PubMed ID: 28513252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DPANN: improved sequence to structure alignments following fold recognition.
    Reinhardt A; Eisenberg D
    Proteins; 2004 Aug; 56(3):528-38. PubMed ID: 15229885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.
    Kaur H; Raghava GP
    In Silico Biol; 2006; 6(1-2):111-25. PubMed ID: 16789918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein secondary structure by cascade-correlation neural networks.
    Wood MJ; Hirst JD
    Bioinformatics; 2004 Feb; 20(3):419-20. PubMed ID: 14960469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep dense inception network for protein beta-turn prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2020 Jan; 88(1):143-151. PubMed ID: 31294886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2018 May; 86(5):592-598. PubMed ID: 29492997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of protein supersecondary structures based on the artificial neural network method.
    Sun Z; Rao X; Peng L; Xu D
    Protein Eng; 1997 Jul; 10(7):763-9. PubMed ID: 9342142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
    Rost B; Sander C
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7558-62. PubMed ID: 8356056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
    Spencer M; Eickholt J; Jianlin Cheng
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):103-12. PubMed ID: 25750595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.