BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 29508999)

  • 1. FePc and FePcF
    Karstens R; Glaser M; Belser A; Balle D; Polek M; Ovsyannikov R; Giangrisostomi E; Chassé T; Peisert H
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-interconnected ruthenium phthalocyanine nanoparticles used for real-time monitoring of nitric oxide released from vascular endothelial barrier model.
    Chen C; Cheng J; Xiao Y; Kong T; Tang H; Xie Q; Chen C
    Biosens Bioelectron; 2024 Apr; 250():116048. PubMed ID: 38266618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macro-, Micro- and Nano-Roughness of Carbon-Based Interface with the Living Cells: Towards a Versatile Bio-Sensing Platform.
    Golubewa L; Rehman H; Kulahava T; Karpicz R; Baah M; Kaplas T; Shah A; Malykhin S; Obraztsov A; Rutkauskas D; Jankunec M; Matulaitienė I; Selskis A; Denisov A; Svirko Y; Kuzhir P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a nanozyme-based electrochemical catalyst for real-time biomarker sensing of superoxide and nitric oxide anions released from living cells and exogenous donors.
    Arul P; Huang ST; Nandhini C; Huang CH; Gowthaman NSK; Huang CH
    Biosens Bioelectron; 2024 Jun; 261():116485. PubMed ID: 38852323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems.
    Tabish TA; Zhu Y; Shukla S; Kadian S; Sangha GS; Lygate CA; Narayan RJ
    Appl Phys Rev; 2023 Nov; 10():041310. PubMed ID: 38229764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive electrochemical measurement of nitric oxide released from living cells based on dealloyed PtBi alloy nanoparticles.
    Sun X; Yan Y; Wang Y; Zhao Y; Dou X; Zhang D; Lu L; Guo G; Wang X
    Mikrochim Acta; 2023 Jun; 190(7):277. PubMed ID: 37380931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications.
    Ashraf G; Aziz A; Iftikhar T; Zhong ZT; Asif M; Chen W
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical microwell sensor with Fe-N co-doped carbon catalyst to monitor nitric oxide release from endothelial cell spheroids.
    Hiramoto K; Iwase K; Utagawa Y; Nashimoto Y; Honma I; Ino K; Shiku H
    Anal Sci; 2022 Oct; 38(10):1297-1304. PubMed ID: 35895213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors.
    Klyamer D; Shutilov R; Basova T
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis.
    Rojas D; Hernández-Rodríguez JF; Della Pelle F; Escarpa A; Compagnone D
    Mikrochim Acta; 2022 Feb; 189(3):102. PubMed ID: 35152341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandwiching Phosphorene with Iron Porphyrin Monolayer for High Stability and Its Biomimetic Sensor to Sensitively Detect Living Cell Released NO.
    Zhang C; Hu F; Hao X; Rao Q; Hu T; Sun W; Guo C; Li CM
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104066. PubMed ID: 34978161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azaporphyrins Embedded on Carbon-Based Nanomaterials for Potential Use in Electrochemical Sensing-A Review.
    Koczorowski T; Cerbin-Koczorowska M; Rębiś T
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device.
    Alizadeh N; Salimi A; Sham TK
    Mikrochim Acta; 2021 Jun; 188(7):240. PubMed ID: 34184110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D materials in electrochemical sensors for in vitro or in vivo use.
    Munteanu RE; Moreno PS; Bramini M; Gáspár S
    Anal Bioanal Chem; 2021 Jan; 413(3):701-725. PubMed ID: 32776222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials.
    Reddy KK; Bandal H; Satyanarayana M; Goud KY; Gobi KV; Jayaramudu T; Amalraj J; Kim H
    Adv Sci (Weinh); 2020 Jul; 7(13):1902980. PubMed ID: 32670744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-atom Ni-N
    Zhou M; Jiang Y; Wang G; Wu W; Chen W; Yu P; Lin Y; Mao J; Mao L
    Nat Commun; 2020 Jun; 11(1):3188. PubMed ID: 32581225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Property of Graphene and Its Application to Electrochemical Biosensing.
    Lee JH; Park SJ; Choi JW
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Phthalocyanine Decorated Nitrogen-Doped Graphene Biosensing Platform for Real-Time Detection of Nitric Oxide Released from Living Cells.
    Xu H; Liao C; Liu Y; Ye BC; Liu B
    Anal Chem; 2018 Apr; 90(7):4438-4444. PubMed ID: 29508999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanoparticles-3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide.
    Li J; Xie J; Gao L; Li CM
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2726-34. PubMed ID: 25580718
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.