These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29509201)

  • 21. PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant.
    Brown EEB; Woltornist SJ; Adamson DH
    J Colloid Interface Sci; 2020 Nov; 580():700-708. PubMed ID: 32712476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures.
    Nautiyal P; Boesl B; Agarwal A
    Small; 2017 Mar; 13(10):. PubMed ID: 28026152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy.
    Xu L; Xiao L; Jia P; Goossens K; Liu P; Li H; Cheng C; Huang Y; Bielawski CW; Geng J
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26392-26399. PubMed ID: 28707895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.
    Faraji S; Stano KL; Yildiz O; Li A; Zhu Y; Bradford PD
    Nanoscale; 2015 Oct; 7(40):17038-47. PubMed ID: 26419855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams.
    Zhai T; Verdolotti L; Kacilius S; Cerruti P; Gentile G; Xia H; Stanzione M; Buonocore GG; Lavorgna M
    Nanoscale; 2019 May; 11(18):8835-8844. PubMed ID: 31012901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding.
    Wu Y; Wang Z; Liu X; Shen X; Zheng Q; Xue Q; Kim JK
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9059-9069. PubMed ID: 28224798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors.
    Zhao L; Qiang F; Dai SW; Shen SC; Huang YZ; Huang NJ; Zhang GD; Guan LZ; Gao JF; Song YH; Tang LC
    Nanoscale; 2019 May; 11(21):10229-10238. PubMed ID: 31049502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring.
    Toto E; Laurenzi S; Santonicola MG
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PolyHIPE Foam for Pressure Sensing.
    Yang L; Liu Y; Filipe CDM; Ljubic D; Luo Y; Zhu H; Yan J; Zhu S
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4318-4327. PubMed ID: 30615426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene and graphitic derivative filled polymer composites as potential sensors.
    Ponnamma D; Guo Q; Krupa I; Al-Maadeed MA; K T V; Thomas S; Sadasivuni KK
    Phys Chem Chem Phys; 2015 Feb; 17(6):3954-81. PubMed ID: 25585199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core-Shell Particles.
    Kim SH; Bazin N; Shaw JI; Yoo JH; Worsley MA; Satcher JH; Sain JD; Kuntz JD; Kucheyev SO; Baumann TF; Hamza AV
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34706-34714. PubMed ID: 27998136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors.
    Boland CS; Khan U; Benameur H; Coleman JN
    Nanoscale; 2017 Nov; 9(46):18507-18515. PubMed ID: 29164224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.
    Boland CS; Khan U; Ryan G; Barwich S; Charifou R; Harvey A; Backes C; Li Z; Ferreira MS; Möbius ME; Young RJ; Coleman JN
    Science; 2016 Dec; 354(6317):1257-1260. PubMed ID: 27940866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design Strategy for Porous Composites Aimed at Pressure Sensor Application.
    Sang Z; Ke K; Manas-Zloczower I
    Small; 2019 Nov; 15(45):e1903487. PubMed ID: 31583819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.
    Kuang J; Liu L; Gao Y; Zhou D; Chen Z; Han B; Zhang Z
    Nanoscale; 2013 Dec; 5(24):12171-7. PubMed ID: 24142261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.
    Kuang J; Dai Z; Liu L; Yang Z; Jin M; Zhang Z
    Nanoscale; 2015; 7(20):9252-60. PubMed ID: 25932597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling of Rod-Like Fillers' Rotation and Translation near Two Growing Cells in Conductive Polymer Composite Foam Processing.
    Wang S; Ameli A; Shaayegan V; Kazemi Y; Huang Y; Naguib HE; Park CB
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Properties of Graphene Foam and Graphene Foam - Tissue Composites.
    Yocham KM; Scott C; Fujimoto K; Brown R; Tanasse E; Oxford JT; Lujan TJ; Estrada D
    Adv Eng Mater; 2018 Sep; 20(9):. PubMed ID: 30581324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compressive modulus and deformation mechanisms of 3DG foams: experimental investigation and multiscale modeling.
    Mahdavi SM; Adibnazari S; Del Monte F; Gutiérrez MC
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34343983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superior Magnetoresistance Performance of Hybrid Graphene Foam/Metal Sulfide Nanocrystal Devices.
    Zeb MH; Shabbir B; Sagar RUR; Mahmood N; Chen K; Qasim I; Malik MI; Yu W; Hossain MM; Dai Z; Ou Q; Bhat MA; Shivananju BN; Li Y; Tang X; Qi K; Younis A; Khan Q; Zhang Y; Bao Q
    ACS Appl Mater Interfaces; 2019 May; 11(21):19397-19403. PubMed ID: 31026141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.