BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 29509206)

  • 1. Two-dimensional transition metal dichalcogenides: interface and defect engineering.
    Hu Z; Wu Z; Han C; He J; Ni Z; Chen W
    Chem Soc Rev; 2018 May; 47(9):3100-3128. PubMed ID: 29509206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges.
    Liao W; Zhao S; Li F; Wang C; Ge Y; Wang H; Wang S; Zhang H
    Nanoscale Horiz; 2020 May; 5(5):787-807. PubMed ID: 32129353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus.
    Ryder CR; Wood JD; Wells SA; Hersam MC
    ACS Nano; 2016 Apr; 10(4):3900-17. PubMed ID: 27018800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Solvent Effects on the Properties of Two-Dimensional Transition Metal Dichalcogenides.
    Choi J; Zhang H; Du H; Choi JH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8864-9. PubMed ID: 27018600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering.
    Peng B; Yu G; Zhao Y; Xu Q; Xing G; Liu X; Fu D; Liu B; Tan JR; Tang W; Lu H; Xie J; Deng L; Sum TC; Loh KP
    ACS Nano; 2016 Jun; 10(6):6383-91. PubMed ID: 27243103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Defect Healing of Transition Metal Dichalcogenides by Metallophthalocyanine.
    Ahn H; Huang YC; Lin CW; Chiu YL; Lin EC; Lai YY; Lee YH
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29145-29152. PubMed ID: 30044602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Interface Engineering of Transition-Metal Dichalcogenides with Organic Molecules and Polymers.
    Cho K; Pak J; Chung S; Lee T
    ACS Nano; 2019 Sep; 13(9):9713-9734. PubMed ID: 31330111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bright and Efficient Light-Emitting Devices Based on 2D Transition Metal Dichalcogenides.
    Ahmed T; Zha J; Lin KK; Kuo HC; Tan C; Lien DH
    Adv Mater; 2023 Aug; 35(31):e2208054. PubMed ID: 36808659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in plasma modification of 2D transition metal dichalcogenides.
    Nan H; Zhou R; Gu X; Xiao S; Ken Ostrikov K
    Nanoscale; 2019 Nov; 11(41):19202-19213. PubMed ID: 31436772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides.
    Singh AK; Kumbhakar P; Krishnamoorthy A; Nakano A; Sadasivuni KK; Vashishta P; Roy AK; Kochat V; Tiwary CS
    iScience; 2021 Dec; 24(12):103532. PubMed ID: 34917904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides.
    Li X; Yang J; Sun H; Huang L; Li H; Shi J
    Adv Mater; 2023 Jul; ():e2305115. PubMed ID: 37406665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Gigahertz Photodetection with Transition Metal Dichalcogenides.
    Strauß F; Zeng Z; Braun K; Scheele M
    Acc Chem Res; 2024 May; 57(10):1488-1499. PubMed ID: 38713448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides.
    Ly TH; Chiu MH; Li MY; Zhao J; Perello DJ; Cichocka MO; Oh HM; Chae SH; Jeong HY; Yao F; Li LJ; Lee YH
    ACS Nano; 2014 Nov; 8(11):11401-8. PubMed ID: 25343242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitatively Deciphering Electronic Properties of Defects at Atomically Thin Transition-Metal Dichalcogenides.
    Wu SS; Huang TX; Xu X; Bao YF; Pei XD; Yao X; Cao MF; Lin KQ; Wang X; Wang D; Ren B
    ACS Nano; 2022 Mar; 16(3):4786-4794. PubMed ID: 35224974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial Large-Area MoS
    Maji TK; J R A; Mukherjee S; Alexander R; Mondal A; Das S; Sharma RK; Chakraborty NK; Dasgupta K; Sharma AMR; Hawaldar R; Pandey M; Naik A; Majumdar K; Pal SK; Adarsh KV; Ray SK; Karmakar D
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44345-44359. PubMed ID: 32864953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer.
    Choi J; Zhang H; Choi JH
    ACS Nano; 2016 Jan; 10(1):1671-80. PubMed ID: 26720839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics.
    Li S; Hong J; Gao B; Lin YC; Lim HE; Lu X; Wu J; Liu S; Tateyama Y; Sakuma Y; Tsukagoshi K; Suenaga K; Taniguchi T
    Adv Sci (Weinh); 2021 Jun; 8(11):e2004438. PubMed ID: 34105285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic and Extrinsic Defect-Related Excitons in TMDCs.
    Greben K; Arora S; Harats MG; Bolotin KI
    Nano Lett; 2020 Apr; 20(4):2544-2550. PubMed ID: 32191482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.