These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29509421)

  • 21. Infrared spectral identification of the Criegee intermediate (CH
    Wang YY; Chung CY; Lee YP
    J Chem Phys; 2016 Oct; 145(15):154303. PubMed ID: 27782495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production.
    Barber VP; Pandit S; Green AM; Trongsiriwat N; Walsh PJ; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2018 Aug; 140(34):10866-10880. PubMed ID: 30074392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on ozonolysis of asymmetric alkenes with matrix isolation and FT-IR spectroscopy.
    Wang Z; Tong S; Chen M; Jing B; Li W; Guo Y; Ge M; Wang S
    Chemosphere; 2020 Aug; 252():126413. PubMed ID: 32197171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry.
    Berndt T; Herrmann H; Kurtén T
    J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of the gas-phase ozonolysis of beta-pinene (C10H16).
    Nguyen TL; Peeters J; Vereecken L
    Phys Chem Chem Phys; 2009 Jul; 11(27):5643-56. PubMed ID: 19842482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two Pathways for Dissociation of Highly Energized syn-CH3CHOO to OH Plus Vinoxy.
    Wang X; Bowman JM
    J Phys Chem Lett; 2016 Sep; 7(17):3359-64. PubMed ID: 27513186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates.
    Liu F; Beames JM; Lester MI
    J Chem Phys; 2014 Dec; 141(23):234312. PubMed ID: 25527940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate.
    Caravan RL; Vansco MF; Au K; Khan MAH; Li YL; Winiberg FAF; Zuraski K; Lin YH; Chao W; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Lin JJ; Shallcross DE; Sheps L; Klippenstein SJ; Taatjes CA; Lester MI
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9733-9740. PubMed ID: 32321826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates.
    Vansco MF; Caravan RL; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Khan MAH; Shallcross DE; Taatjes CA; Lester MI
    J Phys Chem A; 2020 May; 124(18):3542-3554. PubMed ID: 32255634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of the absolute photoionization cross-sections for C1-C4 Criegee intermediates and vinyl hydroperoxides.
    Huang C; Yang B; Zhang F
    J Chem Phys; 2019 Apr; 150(16):164305. PubMed ID: 31042918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the iodine-atom adduct in the synthesis and kinetics of methyl vinyl ketone oxide-a resonance-stabilized Criegee intermediate.
    Lin YH; Li YL; Chao W; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2020 Jun; 22(24):13603-13612. PubMed ID: 32515446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.
    Ma Y; Porter RA; Chappell D; Russell AT; Marston G
    Phys Chem Chem Phys; 2009 Jun; 11(21):4184-97. PubMed ID: 19458820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.
    Green AM; Barber VP; Fang Y; Klippenstein SJ; Lester MI
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12372-12377. PubMed ID: 29109292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Velocity map imaging of OH radical products from IR activated (CH3)2COO Criegee intermediates.
    Li H; Kidwell NM; Wang X; Bowman JM; Lester MI
    J Chem Phys; 2016 Sep; 145(10):104307. PubMed ID: 27634260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absolute photodissociation cross sections of thermalized methyl vinyl ketone oxide and methacrolein oxide.
    Lin YH; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2022 May; 24(17):10439-10450. PubMed ID: 35441630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct observation of vinyl hydroperoxide.
    Liu F; Fang Y; Kumar M; Thompson WH; Lester MI
    Phys Chem Chem Phys; 2015 Aug; 17(32):20490-4. PubMed ID: 26199999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.
    Drozd GT; Kroll J; Donahue NM
    J Phys Chem A; 2011 Jan; 115(2):161-6. PubMed ID: 21162563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infrared characterization of formation and resonance stabilization of the Criegee intermediate methyl vinyl ketone oxide.
    Chung CA; Lee YP
    Commun Chem; 2021 Jan; 4(1):8. PubMed ID: 36697539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.