BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2950957)

  • 1. Flow cytometry, a very useful technique for the characterization of intestinal membrane vesicles.
    Gorvel JP; Mishal Z
    Biol Cell; 1986; 58(2):157-67. PubMed ID: 2950957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes.
    Moktari S; Feracci H; Gorvel JP; Mishal Z; Rigal A; Maroux S
    J Membr Biol; 1986; 89(1):53-63. PubMed ID: 2870193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes. Presence of brush border hydrolases in the basolateral membrane of rabbit enterocytes.
    Colas B; Maroux S
    Biochim Biophys Acta; 1980 Aug; 600(2):406-20. PubMed ID: 7407121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometry is a new method for the characterization of intestinal plasma membrane.
    Gorvel JP; Mawas C; Maroux S; Mishal Z
    Biochem J; 1984 Jul; 221(2):453-7. PubMed ID: 6477477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational change of rabbit aminopeptidase N into enterocyte plasma membrane domains analyzed by flow cytometry fluorescence energy transfer.
    Gorvel JP; Mishal Z; Liegey F; Rigal A; Maroux S
    J Cell Biol; 1989 Jun; 108(6):2193-200. PubMed ID: 2472401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence and characterization of acetylcholinesterase in brush-border and basolateral membranes of rabbit enterocytes.
    Sine JP; Colas B
    Biochim Biophys Acta; 1985 Jul; 817(1):190-2. PubMed ID: 4005256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the transit of aminopeptidase N through the basolateral membrane before it reaches the brush border of enterocytes.
    Massey D; Feracci H; Gorvel JP; Rigal A; Soulié JM; Maroux S
    J Membr Biol; 1987; 96(1):19-25. PubMed ID: 2884323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation, purification and characteristics of brush border and basolateral membranes from cattle intestinal epithelium cells].
    Tsvilikhovskiĭ NI; Usatiuk PV; Mel'nichuk DA
    Ukr Biokhim Zh (1978); 1988; 60(6):91-4. PubMed ID: 2853473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous isolation and characterization of brush border and basolateral membrane vesicles from bovine small intestine.
    Wilson JW; Webb KE
    J Anim Sci; 1990 Feb; 68(2):583-90. PubMed ID: 2312442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit.
    Marxer A; Stieger B; Quaroni A; Kashgarian M; Hauri HP
    J Cell Biol; 1989 Sep; 109(3):1057-69. PubMed ID: 2549076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a small intestinal surfactant-like particle containing alkaline phosphatase and other digestive enzymes.
    Eliakim R; DeSchryver-Kecskemeti K; Nogee L; Stenson WF; Alpers DH
    J Biol Chem; 1989 Dec; 264(34):20614-9. PubMed ID: 2584232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats.
    Prakash UN; Srinivasan K
    Br J Nutr; 2010 Jul; 104(1):31-9. PubMed ID: 20178671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.
    Hansen GH; Pedersen J; Niels-Christiansen LL; Immerdal L; Danielsen EM
    Biochem J; 2003 Jul; 373(Pt 1):125-32. PubMed ID: 12689332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature adaptation of biological membranes: differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa.
    Lee JA; Cossins AR
    Biochim Biophys Acta; 1990 Jul; 1026(2):195-203. PubMed ID: 2378886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immuno-electronmicroscopical localization of a microvillus membrane disaccharidase in the human small-intestinal epithelium with monoclonal antibodies.
    Fransen JA; Ginsel LA; Hauri HP; Sterchi E; Blok J
    Eur J Cell Biol; 1985 Jul; 38(1):6-15. PubMed ID: 3896809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of microvillus membrane vesicles from pig small intestine by immunoadsorbent chromatography.
    Carlsen J; Christiansen K; Bro B
    Biochim Biophys Acta; 1982 Jul; 689(1):12-20. PubMed ID: 7104346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport studies with renal proximal tubular and small intestinal brush border and basolateral membrane vesicles: vesicle heterogeneity, coexistence of transport system.
    Murer H; Gmaj P; Steiger B; Hagenbuch B
    Methods Enzymol; 1989; 172():346-64. PubMed ID: 2747534
    [No Abstract]   [Full Text] [Related]  

  • 18. Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons.
    Zweibaum A; Hauri HP; Sterchi E; Chantret I; Haffen K; Bamat J; Sordat B
    Int J Cancer; 1984 Nov; 34(5):591-8. PubMed ID: 6389373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the proline-specific aminopeptidase P of the intestinal brush border an integral membrane enzyme?
    Lasch J; Koelsch R; Ladhoff AM; Hartrodt B
    Biomed Biochim Acta; 1986; 45(7):833-43. PubMed ID: 3790100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and glycosylation of the filamentous brush border glycocalyx (FBBG) during rabbit enterocyte differentiation along the crypt-villus axis.
    Maury J; Bernadac A; Rigal A; Maroux S
    J Cell Sci; 1995 Jul; 108 ( Pt 7)():2705-13. PubMed ID: 7593311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.