These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29509687)

  • 1. Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila.
    Talmat-Amar Y; Arribat Y; Parmentier ML
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29509687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Important neuronal toxicity of microtubule-bound Tau in vivo in Drosophila.
    Talmat-Amar Y; Arribat Y; Redt-Clouet C; Feuillette S; Bougé AL; Lecourtois M; Parmentier ML
    Hum Mol Genet; 2011 Oct; 20(19):3738-45. PubMed ID: 21705366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport.
    Torroja L; Chu H; Kotovsky I; White K
    Curr Biol; 1999 May; 9(9):489-92. PubMed ID: 10322116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1.
    Iijima-Ando K; Sekiya M; Maruko-Otake A; Ohtake Y; Suzuki E; Lu B; Iijima KM
    PLoS Genet; 2012; 8(8):e1002918. PubMed ID: 22952452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau and axonopathy in neurodegenerative disorders.
    Higuchi M; Lee VM; Trojanowski JQ
    Neuromolecular Med; 2002; 2(2):131-50. PubMed ID: 12428808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila.
    Bolkan BJ; Kretzschmar D
    Dev Neurobiol; 2014 Dec; 74(12):1210-25. PubMed ID: 24909306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila.
    Bettencourt da Cruz A; Schwärzel M; Schulze S; Niyyati M; Heisenberg M; Kretzschmar D
    Mol Biol Cell; 2005 May; 16(5):2433-42. PubMed ID: 15772149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking.
    Voelzmann A; Okenve-Ramos P; Qu Y; Chojnowska-Monga M; Del Caño-Espinel M; Prokop A; Sanchez-Soriano N
    Elife; 2016 Aug; 5():. PubMed ID: 27501441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.
    Hannan SB; Dräger NM; Rasse TM; Voigt A; Jahn TR
    J Neurochem; 2016 Apr; 137(1):12-25. PubMed ID: 26756400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule-associated proteins regulate microtubule function as the track for intracellular membrane organelle transports.
    Sato-Harada R; Okabe S; Umeyama T; Kanai Y; Hirokawa N
    Cell Struct Funct; 1996 Oct; 21(5):283-95. PubMed ID: 9118234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity.
    Butzlaff M; Hannan SB; Karsten P; Lenz S; Ng J; Voßfeldt H; Prüßing K; Pflanz R; Schulz JB; Rasse T; Voigt A
    Hum Mol Genet; 2015 Jul; 24(13):3623-37. PubMed ID: 25794683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport.
    Butler VJ; Salazar DA; Soriano-Castell D; Alves-Ferreira M; Dennissen FJA; Vohra M; Oses-Prieto JA; Li KH; Wang AL; Jing B; Li B; Groisman A; Gutierrez E; Mooney S; Burlingame AL; Ashrafi K; Mandelkow EM; Encalada SE; Kao AW
    Hum Mol Genet; 2019 May; 28(9):1498-1514. PubMed ID: 30590647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo.
    Cowan CM; Bossing T; Page A; Shepherd D; Mudher A
    Acta Neuropathol; 2010 Nov; 120(5):593-604. PubMed ID: 20617325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule stabilising peptides rescue tau phenotypes in-vivo.
    Quraishe S; Sealey M; Cranfield L; Mudher A
    Sci Rep; 2016 Dec; 6():38224. PubMed ID: 27910888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies.
    Ubhi KK; Shaibah H; Newman TA; Shepherd D; Mudher A
    Invert Neurosci; 2007 Sep; 7(3):165-71. PubMed ID: 17636367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy.
    Sealey MA; Vourkou E; Cowan CM; Bossing T; Quraishe S; Grammenoudi S; Skoulakis EMC; Mudher A
    Neurobiol Dis; 2017 Sep; 105():74-83. PubMed ID: 28502805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abeta exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease.
    Folwell J; Cowan CM; Ubhi KK; Shiabh H; Newman TA; Shepherd D; Mudher A
    Exp Neurol; 2010 Jun; 223(2):401-9. PubMed ID: 19782075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.
    Bougé AL; Parmentier ML
    Dis Model Mech; 2016 Mar; 9(3):307-19. PubMed ID: 26822478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of the Drosophila tau homolog.
    Heidary G; Fortini ME
    Mech Dev; 2001 Oct; 108(1-2):171-8. PubMed ID: 11578871
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Papanikolopoulou K; Roussou IG; Gouzi JY; Samiotaki M; Panayotou G; Turin L; Skoulakis EMC
    J Neurosci; 2019 Oct; 39(42):8315-8329. PubMed ID: 31488613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.