These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative immunohistochemical expression of β-catenin, EGFR, ErbB2, and p63 in adamantinomatous and papillary craniopharyngiomas. Esheba GE; Hassan AA J Egypt Natl Canc Inst; 2015 Sep; 27(3):139-45. PubMed ID: 26198262 [TBL] [Abstract][Full Text] [Related]
4. Immune Microenvironment of Primary and Recurrent Craniopharyngiomas: A Study of the Differences and Clinical Significance. Lin D; Wang Y; Zhou Z; Lin Z World Neurosurg; 2019 Jul; 127():e212-e220. PubMed ID: 30880197 [TBL] [Abstract][Full Text] [Related]
5. Recurrent adamantinomatous craniopharyngiomas show MAPK pathway activation, clonal evolution and rare TP53-loss-mediated malignant progression. Apps JR; Gonzalez-Meljem JM; Guiho R; Pickles JC; Prince E; Schwalbe E; Joshi N; Stone TJ; Ogunbiyi O; Chalker J; Bassey A; Otto G; Davies R; Hughes D; Brandner S; Tan E; Lee V; Hayhurst C; Kline C; Castellano S; Hankinson T; Deutschbein T; Jacques TS; Martinez-Barbera JP Acta Neuropathol Commun; 2024 Aug; 12(1):127. PubMed ID: 39127699 [TBL] [Abstract][Full Text] [Related]
7. In-depth proteomic profiling captures subtype-specific features of craniopharyngiomas. Kim JH; Kim H; Dan K; Kim SI; Park SH; Han D; Kim YH Sci Rep; 2021 Oct; 11(1):21206. PubMed ID: 34707096 [TBL] [Abstract][Full Text] [Related]
8. Immunohistochemistry or Molecular Analysis: Which Method Is Better for Subtyping Craniopharyngioma? Fukuhara N; Iwata T; Inoshita N; Yoshimoto K; Kitagawa M; Fukuhara H; Tatsushima K; Yamaguchi-Okada M; Takeshita A; Ito J; Takeuchi Y; Yamada S; Nishioka H Endocr Pathol; 2021 Jun; 32(2):262-268. PubMed ID: 32965631 [TBL] [Abstract][Full Text] [Related]
9. High-resolution melting and immunohistochemical analysis efficiently detects mutually exclusive genetic alterations of adamantinomatous and papillary craniopharyngiomas. Yoshimoto K; Hatae R; Suzuki SO; Hata N; Kuga D; Akagi Y; Amemiya T; Sangatsuda Y; Mukae N; Mizoguchi M; Iwaki T; Iihara K Neuropathology; 2018 Feb; 38(1):3-10. PubMed ID: 28840946 [TBL] [Abstract][Full Text] [Related]
10. Program Death 1 Immune Checkpoint and Tumor Microenvironment: Implications for Patients With Intrahepatic Cholangiocarcinoma. Gani F; Nagarajan N; Kim Y; Zhu Q; Luan L; Bhaijjee F; Anders RA; Pawlik TM Ann Surg Oncol; 2016 Aug; 23(8):2610-7. PubMed ID: 27012989 [TBL] [Abstract][Full Text] [Related]
11. The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC). Tomioka N; Azuma M; Ikarashi M; Yamamoto M; Sato M; Watanabe KI; Yamashiro K; Takahashi M Breast Cancer; 2018 Jan; 25(1):34-42. PubMed ID: 28488168 [TBL] [Abstract][Full Text] [Related]
12. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. Goschzik T; Gessi M; Dreschmann V; Gebhardt U; Wang L; Yamaguchi S; Wheeler DA; Lauriola L; Lau CC; Müller HL; Pietsch T J Neuropathol Exp Neurol; 2017 Feb; 76(2):126-134. PubMed ID: 28069929 [TBL] [Abstract][Full Text] [Related]
13. Impact of the Canonical Wnt Pathway Activation on the Pathogenesis and Prognosis of Adamantinomatous Craniopharyngiomas. Jucá CEB; Colli LM; Martins CS; Campanini ML; Paixão B; Jucá RV; Saggioro FP; de Oliveira RS; Moreira AC; Machado HR; Neder L; Antonini SR; de Castro M Horm Metab Res; 2018 Jul; 50(7):575-581. PubMed ID: 29625497 [No Abstract] [Full Text] [Related]
14. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Apps JR; Carreno G; Gonzalez-Meljem JM; Haston S; Guiho R; Cooper JE; Manshaei S; Jani N; Hölsken A; Pettorini B; Beynon RJ; Simpson DM; Fraser HC; Hong Y; Hallang S; Stone TJ; Virasami A; Donson AM; Jones D; Aquilina K; Spoudeas H; Joshi AR; Grundy R; Storer LCD; Korbonits M; Hilton DA; Tossell K; Thavaraj S; Ungless MA; Gil J; Buslei R; Hankinson T; Hargrave D; Goding C; Andoniadou CL; Brogan P; Jacques TS; Williams HJ; Martinez-Barbera JP Acta Neuropathol; 2018 May; 135(5):757-777. PubMed ID: 29541918 [TBL] [Abstract][Full Text] [Related]
15. Craniopharyngiomas: A clinicopathological and molecular study of 52 cases - Experience in the Complejo Hospitalario de Toledo and Hospital Universitario 12 de Octubre (Madrid). Moreno-Torres B; Campos-Martín Y; Meléndez B; Garcia Martin RM; Vicente A; Rodríguez de Lope Á; Alen JF; Mollejo M; Hernández-Laín A Clin Neuropathol; 2021; 40(1):26-35. PubMed ID: 33040839 [TBL] [Abstract][Full Text] [Related]
16. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin. Stache C; Bils C; Fahlbusch R; Flitsch J; Buchfelder M; Stefanits H; Czech T; Gaipl U; Frey B; Buslei R; Hölsken A Neurosurg Focus; 2016 Dec; 41(6):E14. PubMed ID: 27903123 [TBL] [Abstract][Full Text] [Related]
17. Expression of programmed death-ligand 1 (PD-L1) in human pituitary neuroendocrine tumor. Suteau V; Collin A; Menei P; Rodien P; Rousselet MC; Briet C Cancer Immunol Immunother; 2020 Oct; 69(10):2053-2061. PubMed ID: 32445029 [TBL] [Abstract][Full Text] [Related]
18. TREM-1 expression in craniopharyngioma and Rathke's cleft cyst: its possible implication for controversial pathology. Liu Y; Wang CH; Li DL; Zhang SC; Peng YP; Peng JX; Song Y; Qi ST; Pan J Oncotarget; 2016 Aug; 7(31):50564-50574. PubMed ID: 27409178 [TBL] [Abstract][Full Text] [Related]
19. Association between programmed cell death ligand-1 expression and extracranial metastasis in intracranial solitary fibrous tumor/hemangiopericytoma. Kamamoto D; Ohara K; Kitamura Y; Yoshida K; Kawakami Y; Sasaki H J Neurooncol; 2018 Sep; 139(2):251-259. PubMed ID: 29675794 [TBL] [Abstract][Full Text] [Related]