These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 29510055)
1. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein. Chakraborty S; Jana B J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055 [TBL] [Abstract][Full Text] [Related]
2. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism. Chakraborty S; Jana B Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167 [TBL] [Abstract][Full Text] [Related]
3. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018 [TBL] [Abstract][Full Text] [Related]
4. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
5. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
6. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
7. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs. Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. Lee H J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. Hudait A; Qiu Y; Odendahl N; Molinero V J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830 [TBL] [Abstract][Full Text] [Related]
11. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related]
12. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
13. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations. Todde G; Whitman C; Hovmöller S; Laaksonen A J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109 [TBL] [Abstract][Full Text] [Related]
14. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
15. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Wierzbicki A; Dalal P; Cheatham TE; Knickelbein JE; Haymet AD; Madura JD Biophys J; 2007 Sep; 93(5):1442-51. PubMed ID: 17526572 [TBL] [Abstract][Full Text] [Related]
16. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
17. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S Langmuir; 2017 Jun; 33(22):5499-5510. PubMed ID: 28505449 [TBL] [Abstract][Full Text] [Related]
19. Source of the ice-binding specificity of antifreeze protein type I. Dalal P; Sönnichsen FD J Chem Inf Comput Sci; 2000; 40(5):1276-84. PubMed ID: 11045824 [TBL] [Abstract][Full Text] [Related]
20. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]