BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29510055)

  • 21. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity.
    Khan NMU; Arai T; Tsuda S; Kondo H
    Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins.
    Aich R; Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2023 Jul; 127(27):6038-6048. PubMed ID: 37395194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
    Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.
    Arai T; Nishimiya Y; Ohyama Y; Kondo H; Tsuda S
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31035615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biophysical and biochemical aspects of antifreeze proteins: Using computational tools to extract atomistic information.
    Kar RK; Bhunia A
    Prog Biophys Mol Biol; 2015 Nov; 119(2):194-204. PubMed ID: 26362837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight.
    Chakraborty S; Jana B
    Metallomics; 2019 Aug; 11(8):1387-1400. PubMed ID: 31267120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of an insect antifreeze protein reveals ordered waters on the ice-binding surface.
    Ye Q; Eves R; Campbell RL; Davies PL
    Biochem J; 2020 Sep; 477(17):3271-3286. PubMed ID: 32794579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It.
    Cui S; Zhang W; Shao X; Cai W
    J Chem Inf Model; 2022 Nov; 62(21):5165-5174. PubMed ID: 34711054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.
    Krishnamoorthy AN; Holm C; Smiatek J
    J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.