BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29510306)

  • 1. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare-earth element yttrium enhances the tolerance of curly-leaf pondweed (Potamogeton crispus) to acute nickel toxicity.
    Lyu K; Wang X; Wang L; Wang G
    Environ Pollut; 2019 May; 248():114-120. PubMed ID: 30784830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus.
    Monferrán MV; Agudo JA; Pignata ML; Wunderlin DA
    Environ Pollut; 2009; 157(8-9):2570-6. PubMed ID: 19324479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands.
    Xin J; Ma S; Li Y; Zhao C; Tian R
    Ecotoxicol Environ Saf; 2020 Oct; 203():111024. PubMed ID: 32741747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment.
    Peng K; Luo C; Lou L; Li X; Shen Z
    Sci Total Environ; 2008 Mar; 392(1):22-9. PubMed ID: 18178241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper phytoextraction by Salvinia cucullata: biochemical and morphological study.
    Das S; Goswami S
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1363-1371. PubMed ID: 27778270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey).
    Demirezen D; Aksoy A
    Chemosphere; 2004 Aug; 56(7):685-96. PubMed ID: 15234165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.
    Goswami S; Das S
    Ecotoxicol Environ Saf; 2016 Apr; 126():211-218. PubMed ID: 26773830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L.
    Singh NK; Pandey GC; Rai UN; Tripathi RD; Singh HB; Gupta DK
    Bull Environ Contam Toxicol; 2005 May; 74(5):857-63. PubMed ID: 16097318
    [No Abstract]   [Full Text] [Related]  

  • 10. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.
    Monferrán MV; Pignata ML; Wunderlin DA
    Environ Pollut; 2012 Feb; 161():15-22. PubMed ID: 22230062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea increased nickel and copper accumulation in the leaves of Egeria densa (Planch.) Casp. and Ceratophyllum demersum L. during short-term exposure.
    Maleva M; Borisova G; Chukina N; Kumar A
    Ecotoxicol Environ Saf; 2018 Feb; 148():152-159. PubMed ID: 29040823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds.
    Sivaci A; Elmas E; Gümüş F; Sivaci ER
    Arch Environ Contam Toxicol; 2008 May; 54(4):612-8. PubMed ID: 17973070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Citric acid assisted phytoremediation of copper by Brassica napus L.
    Zaheer IE; Ali S; Rizwan M; Farid M; Shakoor MB; Gill RA; Najeeb U; Iqbal N; Ahmad R
    Ecotoxicol Environ Saf; 2015 Oct; 120():310-7. PubMed ID: 26099461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can PAHs influence Cu accumulation by salt marsh plants?
    Almeida CM; Mucha AP; Delgado MF; Caçador MI; Bordalo AA; Vasconcelos MT
    Mar Environ Res; 2008 Sep; 66(3):311-8. PubMed ID: 18539325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytofiltration of As
    Griboff J; Wunderlin DA; Monferran MV
    Int J Phytoremediation; 2018 Jul; 20(9):914-921. PubMed ID: 29873542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn.
    de Freitas TA; França MG; de Almeida AA; de Oliveira SJ; de Jesus RM; Souza VL; Dos Santos Silva JV; Mangabeira PA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15479-94. PubMed ID: 26006069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid.
    Xing W; Huang W; Liu G
    Environ Toxicol; 2010 Apr; 25(2):103-12. PubMed ID: 19260045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization.
    Zlobin IE; Kholodova VP; Rakhmankulova ZF; Kuznetsov VV
    Photosynth Res; 2015 Aug; 125(1-2):141-50. PubMed ID: 25361533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.