BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29510306)

  • 21. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.
    Delmail D; Labrousse P; Hourdin P; Larcher L; Moesch C; Botineau M
    Int J Phytoremediation; 2013; 15(7):647-62. PubMed ID: 23819265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of nanomolar copper on water plants--comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions.
    Thomas G; Stärk HJ; Wellenreuther G; Dickinson BC; Küpper H
    Aquat Toxicol; 2013 Sep; 140-141():27-36. PubMed ID: 23747550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L.
    Xu Q; Min H; Cai S; Fu Y; Sha S; Xie K; Du K
    Chemosphere; 2012 Sep; 89(1):114-20. PubMed ID: 22609454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing interactions between environmental factors and aquatic toxicity: Influences of dissolved CO
    Huang W; Han S; Zhou Q; Li W; Xing W
    Aquat Toxicol; 2019 Jul; 212():247-258. PubMed ID: 31170659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecophysiological tolerance of duckweeds exposed to copper.
    Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H
    Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study.
    Dogan M; Karatas M; Aasim M
    Ecotoxicol Environ Saf; 2018 Feb; 148():431-440. PubMed ID: 29101888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines.
    Juang KW; Lee YI; Lai HY; Chen BC
    Ecotoxicol Environ Saf; 2014 Jun; 104():36-42. PubMed ID: 24632121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.
    Rivelli AR; De Maria S; Puschenreiter M; Gherbin P
    Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of roots in the accumulation and removal of cadmium by the aquatic plant Hydrilla verticillata.
    He Y; Rui H; Chen C; Chen Y; Shen Z
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13308-16. PubMed ID: 27023818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters.
    Pietrini F; Iori V; Bianconi D; Mughini G; Massacci A; Zacchini M
    J Environ Manage; 2015 Oct; 162():221-31. PubMed ID: 26253590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.
    Iori V; Zacchini M; Pietrini F
    J Hazard Mater; 2013 Nov; 262():796-804. PubMed ID: 24140530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).
    Choo TP; Lee CK; Low KS; Hishamuddin O
    Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle.
    Xue PY; Li GX; Liu WJ; Yan CZ
    Chemosphere; 2010 Nov; 81(9):1098-103. PubMed ID: 20934737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.
    Hippler FWR; Petená G; Boaretto RM; Quaggio JA; Azevedo RA; Mattos-Jr D
    Environ Sci Pollut Res Int; 2018 May; 25(13):13134-13146. PubMed ID: 29488204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry.
    Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 2004 Sep; 59(1):64-9. PubMed ID: 15261724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system.
    Dai H; Wei S; Pogrzeba M; Rusinowski S; Krzyżak J; Jia G
    Ecotoxicol Environ Saf; 2020 Mar; 190():110176. PubMed ID: 31927358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring.
    Li C; Wang M; Luo X; Liang L; Han X; Lin X
    J Environ Radioact; 2019 Mar; 198():43-49. PubMed ID: 30590332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia.
    Borisova G; Chukina N; Maleva M; Kumar A; Prasad MN
    Int J Phytoremediation; 2016 Oct; 18(10):1037-45. PubMed ID: 27167595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.