BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29510369)

  • 1. Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater.
    Zhao P; Yu F; Wang R; Ma Y; Wu Y
    Chemosphere; 2018 Jun; 200():612-620. PubMed ID: 29510369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution.
    Fei Y; Li Y; Han S; Ma J
    J Colloid Interface Sci; 2016 Dec; 484():196-204. PubMed ID: 27614043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].
    Zhu WH; Dong LF; Wang XR; Zhai YL
    Huan Jing Ke Xue; 2013 Jul; 34(7):2711-7. PubMed ID: 24028003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylene blue adsorption on graphene oxide/calcium alginate composites.
    Li Y; Du Q; Liu T; Sun J; Wang Y; Wu S; Wang Z; Xia Y; Xia L
    Carbohydr Polym; 2013 Jun; 95(1):501-7. PubMed ID: 23618299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.
    Wang Y; Pleasant S; Jain P; Powell J; Townsend T
    Waste Manag; 2016 Jul; 53():128-35. PubMed ID: 26992666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.
    Obiri-Nyarko F; Grajales-Mesa SJ; Malina G
    Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adsorption of Cs
    Xia M; Zheng X; Du M; Wang Y; Ding A; Dou J
    Chemosphere; 2018 Jul; 203():271-280. PubMed ID: 29625316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/calix[4]arenes modified graphene oxide nanocomposite beads: Preparation, characterization, and dye adsorption studies.
    Mohammadi A; Doctorsafaei AH; Zia KM
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1353-1361. PubMed ID: 30261248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system.
    Jang J; Lee DS
    Bioresour Technol; 2016 Oct; 218():294-300. PubMed ID: 27372009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions.
    Anirudhan TS; Deepa JR
    J Colloid Interface Sci; 2017 Mar; 490():343-356. PubMed ID: 27914333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel alginate particles decorated with nickel for enhancing ciprofloxacin removal: Characterization and mechanism analysis.
    Zhang X; Lin X; Ding H; He Y; Yang H; Chen Y; Chen X; Luo X
    Ecotoxicol Environ Saf; 2019 Mar; 169():392-401. PubMed ID: 30469024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.
    Thakur S; Pandey S; Arotiba OA
    Carbohydr Polym; 2016 Nov; 153():34-46. PubMed ID: 27561469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.
    Zhu X; Tsang DC; Chen F; Li S; Yang X
    Environ Technol; 2015; 36(24):3094-102. PubMed ID: 26050736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.
    Mahdavinia GR; Mousanezhad S; Hosseinzadeh H; Darvishi F; Sabzi M
    Carbohydr Polym; 2016 Aug; 147():379-391. PubMed ID: 27178944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review.
    Zhang Y; Cao B; Yin H; Meng L; Jin W; Wang F; Xu J; Al-Tabbaa A
    Chemosphere; 2022 Dec; 308(Pt 1):136290. PubMed ID: 36058373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study.
    Jiao C; Xiong J; Tao J; Xu S; Zhang D; Lin H; Chen Y
    Int J Biol Macromol; 2016 Feb; 83():133-41. PubMed ID: 26627600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property.
    Li J; Ma J; Chen S; Huang Y; He J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():25-32. PubMed ID: 29752096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron removal by a composite sorbent: Polyethylenimine/tannic acid derivative immobilized in alginate hydrogel beads.
    Bertagnolli C; Grishin A; Vincent T; Guibal E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Mar; 52(4):359-367. PubMed ID: 27960600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.
    Erto A; Bortone I; Di Nardo A; Di Natale M; Musmarra D
    J Environ Manage; 2014 Jul; 140():111-9. PubMed ID: 24747934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.