BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29510566)

  • 1. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors.
    Mascolo MC; Ring TA
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29510566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic Peptizing Agent Effect on Anatase-Rutile Ratio and Photocatalytic Performance of TiO2 Nanoparticles.
    Mahmoud HA; Narasimharao K; Ali TT; Khalil KMS
    Nanoscale Res Lett; 2018 Feb; 13(1):48. PubMed ID: 29427190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization.
    Yang J; Mei S; Ferreira JM; Norby P; Quaresmâ S
    J Colloid Interface Sci; 2005 Mar; 283(1):102-6. PubMed ID: 15694429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl(2) aqueous solution at low temperatures.
    Li Y; Lee NH; Hwang DS; Song JS; Lee EG; Kim SJ
    Langmuir; 2004 Dec; 20(25):10838-44. PubMed ID: 15568831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiky mesoporous anatase titania beads: a metastable ammonium titanate-mediated synthesis.
    Chen D; Huang F; Cao L; Cheng YB; Caruso RA
    Chemistry; 2012 Oct; 18(43):13762-9. PubMed ID: 23019011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically porous titania networks with tunable anatase:rutile ratios and their enhanced photocatalytic activities.
    Cao L; Chen D; Li W; Caruso RA
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13129-37. PubMed ID: 25090241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.
    Albetran H; Vega V; Prida VM; Low IM
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29473854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-step synthesis and structural study of mesoporous sulfated titania nanopowder by a controlled hydrolysis process.
    Raj KJ; Viswanathan B
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2462-9. PubMed ID: 20356115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity.
    Yang J; Zhang J; Zhu L; Chen S; Zhang Y; Tang Y; Zhu Y; Li Y
    J Hazard Mater; 2006 Sep; 137(2):952-8. PubMed ID: 16621269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles.
    Saikumari N; Dev SM; Dev SA
    Sci Rep; 2021 Jan; 11(1):1734. PubMed ID: 33462273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of continuous mesoporous Ga-doped titania films with anatase crystallized framework.
    Oveisi H; Beitollahi A; Jiang X; Sato K; Nemoto Y; Fukata N; Yamauchi Y
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6926-33. PubMed ID: 22103100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications.
    Vivero-Escoto JL; Chiang YD; Wu K; Yamauchi Y
    Sci Technol Adv Mater; 2012 Feb; 13(1):013003. PubMed ID: 27877467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous silica coated silica-titania spherical particles: from impregnation to core-shell formation.
    Shiba K; Takei T; Ogawa M
    Dalton Trans; 2016 Nov; 45(46):18742-18749. PubMed ID: 27841410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous gamma-alumina formed through the surfactant-mediated scaffolding of peptized pseudoboehmite nanoparticles.
    Zhang Z; Pinnavaia TJ
    Langmuir; 2010 Jun; 26(12):10063-7. PubMed ID: 20465228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatase formation during the synthesis of mesoporous titania and its photocatalytic effect.
    Beyers E; Cool P; Vansant EF
    J Phys Chem B; 2005 May; 109(20):10081-6. PubMed ID: 16852220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterostructural transformation of mesoporous silica-titania hybrids.
    Paengjun N; Vibulyaseak K; Ogawa M
    Sci Rep; 2021 Feb; 11(1):3210. PubMed ID: 33547337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcalorimetric investigation of high-surface-area mesoporous titania samples for CO2 adsorption.
    Knöfel C; Hornebecq V; Llewellyn PL
    Langmuir; 2008 Aug; 24(15):7963-9. PubMed ID: 18613711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.
    Khalil KM; Elsamahy AA; Elanany MS
    J Colloid Interface Sci; 2002 May; 249(2):359-65. PubMed ID: 16290609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts.
    Chen JE; Lian HY; Dutta S; Alshehri SM; Yamauchi Y; Nguyen MT; Yonezawa T; Wu KC
    Phys Chem Chem Phys; 2015 Nov; 17(41):27653-7. PubMed ID: 26428279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.