These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 29510596)

  • 1. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
    Hakim RM; Tunis BG; Ross MD
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs.
    Zanotto D; Lenzi T; Stegall P; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650404. PubMed ID: 24187223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the dynamic impedance of the human arm without a force sensor.
    Dyck M; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Optical Fiber-Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart Environment: A Proof of Concept.
    Leal-Junior A; Avellar L; Jaimes J; Díaz C; Dos Santos W; Siqueira AAG; Pontes MJ; Marques C; Frizera A
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rehabilitation robotics.
    Munih M; Bajd T
    Technol Health Care; 2011; 19(6):483-95. PubMed ID: 22129949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym.
    Bustamante Valles K; Montes S; Madrigal Mde J; Burciaga A; Martínez ME; Johnson MJ
    J Neuroeng Rehabil; 2016 Sep; 13(1):83. PubMed ID: 27634471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Validation of a Lower-Limb Haptic Rehabilitation Robot.
    Dawson-Elli AR; Adamczyk PG
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1584-1594. PubMed ID: 32634097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.