These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29511068)

  • 1. Photoreceptor specialization and the visuomotor repertoire of the primitive chordate
    Salas P; Vinaithirthan V; Newman-Smith E; Kourakis MJ; Smith WC
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29511068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona.
    Chung J; Newman-Smith E; Kourakis MJ; Miao Y; Borba C; Medina J; Laurent T; Gallean B; Faure E; Smith WC
    Curr Biol; 2023 Aug; 33(16):3360-3370.e4. PubMed ID: 37490920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel visual circuitry in a basal chordate.
    Kourakis MJ; Borba C; Zhang A; Newman-Smith E; Salas P; Manjunath B; Smith WC
    Elife; 2019 Apr; 8():. PubMed ID: 30998184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of left-right axis specification in Ciona induces molecular, cellular, and functional defects in asymmetric brain structures.
    Kourakis MJ; Bostwick M; Zabriskie A; Smith WC
    BMC Biol; 2021 Jul; 19(1):141. PubMed ID: 34256748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fold Change Detection in Visual Processing.
    Borba C; Kourakis MJ; Schwennicke S; Brasnic L; Smith WC
    Front Neural Circuits; 2021; 15():705161. PubMed ID: 34497492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate
    Chung J; Newman-Smith E; Kourakis MJ; Miao Y; Borba C; Medina J; Laurent T; Gallean B; Faure E; Smith WC
    bioRxiv; 2023 Jun; ():. PubMed ID: 37162881
    [No Abstract]   [Full Text] [Related]  

  • 7. Antagonistic Inhibitory Circuits Integrate Visual and Gravitactic Behaviors.
    Bostwick M; Smith EL; Borba C; Newman-Smith E; Guleria I; Kourakis MJ; Smith WC
    Curr Biol; 2020 Feb; 30(4):600-609.e2. PubMed ID: 32008899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circuit Homology between Decussating Pathways in the Ciona Larval CNS and the Vertebrate Startle-Response Pathway.
    Ryan K; Lu Z; Meinertzhagen IA
    Curr Biol; 2017 Mar; 27(5):721-728. PubMed ID: 28216318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CNS connectome of a tadpole larva of
    Ryan K; Lu Z; Meinertzhagen IA
    Elife; 2016 Dec; 5():. PubMed ID: 27921996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton.
    Verasztó C; Gühmann M; Jia H; Rajan VBV; Bezares-Calderón LA; Piñeiro-Lopez C; Randel N; Shahidi R; Michiels NK; Yokoyama S; Tessmar-Raible K; Jékely G
    Elife; 2018 May; 7():. PubMed ID: 29809157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell transcriptome profiling of the Ciona larval brain.
    Sharma S; Wang W; Stolfi A
    Dev Biol; 2019 Apr; 448(2):226-236. PubMed ID: 30392840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of phototaxis in marine zooplankton.
    Jékely G; Colombelli J; Hausen H; Guy K; Stelzer E; Nédélec F; Arendt D
    Nature; 2008 Nov; 456(7220):395-9. PubMed ID: 19020621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The peripheral nervous system of the ascidian tadpole larva: Types of neurons and their synaptic networks.
    Ryan K; Lu Z; Meinertzhagen IA
    J Comp Neurol; 2018 Mar; 526(4):583-608. PubMed ID: 29124768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva.
    Neal S; de Jong DM; Seaver EC
    Proc Biol Sci; 2019 Jun; 286(1904):20182491. PubMed ID: 31161907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted knockdown of an opsin gene inhibits the swimming behaviour photoresponse of ascidian larvae.
    Inada K; Horie T; Kusakabe T; Tsuda M
    Neurosci Lett; 2003 Aug; 347(3):167-70. PubMed ID: 12875912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis.
    Mochizuki Y; Satou Y; Satoh N
    Genesis; 2003 May; 36(1):62-71. PubMed ID: 12748968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal identity: the neuron types of a simple chordate sibling, the tadpole larva of Ciona intestinalis.
    Ryan K; Meinertzhagen IA
    Curr Opin Neurobiol; 2019 Jun; 56():47-60. PubMed ID: 30530111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire.
    Athira A; Dondorp D; Rudolf J; Peytral O; Chatzigeorgiou M
    PLoS Biol; 2022 Aug; 20(8):e3001744. PubMed ID: 35925898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TRP channel PKD2 is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate Ciona.
    Sakamoto A; Hozumi A; Shiraishi A; Satake H; Horie T; Sasakura Y
    Dev Growth Differ; 2022 Sep; 64(7):395-408. PubMed ID: 36053743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary cultures of nervous system cells from the larva of the ascidian Ciona intestinalis.
    Zanetti L; Ristoratore F; Francone M; Piscopo S; Brown ER
    J Neurosci Methods; 2007 Sep; 165(2):191-7. PubMed ID: 17669506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.