These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29511353)

  • 1. A Comprehensive Study of De Novo Genome Assemblers: Current Challenges and Future Prospective.
    Khan AR; Pervez MT; Babar ME; Naveed N; Shoaib M
    Evol Bioinform Online; 2018; 14():1176934318758650. PubMed ID: 29511353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.
    Zhang W; Chen J; Yang Y; Tang Y; Shang J; Shen B
    PLoS One; 2011 Mar; 6(3):e17915. PubMed ID: 21423806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
    Afiahayati ; Sato K; Sakakibara Y
    DNA Res; 2015 Feb; 22(1):69-77. PubMed ID: 25431440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
    Abbas MM; Malluhi QM; Balakrishnan P
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-IDBA: a de Novo assembler for metagenomic data.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2011 Jul; 27(13):i94-101. PubMed ID: 21685107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMARTdenovo: a
    Liu H; Wu S; Li A; Ruan J
    GigaByte; 2021; 2021():gigabyte15. PubMed ID: 36824332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly algorithms for next-generation sequencing data.
    Miller JR; Koren S; Sutton G
    Genomics; 2010 Jun; 95(6):315-27. PubMed ID: 20211242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice of assemblers has a critical impact on de novo assembly of SARS-CoV-2 genome and characterizing variants.
    Islam R; Raju RS; Tasnim N; Shihab IH; Bhuiyan MA; Araf Y; Islam T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.